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Chapter 1 
 
Introduction
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Theory of mind: Understanding others

We live in a social world in which we frequently interact with others. In our jobs, for example, 
we may collaborate with colleagues and negotiate with superiors, and in our leisure time we may 
compete with friends when playing a board game. These different scenarios have in common 
that in each of them we are trying to understand one another. For example, to collaborate 
with a colleague we need to know what her goals are to be able to find commonalities, as 
a basis for working together. To compete with a friend in a board game we need to know 
what her goals are to be able to anticipate her actions. In either case, we are reasoning about 
goals, which happen to be intangible, hidden to the eye. In spite of this characteristic of goals, 
human beings are quite proficient at inferring goals and other so-called mental states such as 
beliefs, desires, and intentions. In fact, the ability to infer mental states of others seems to be 
unique to human intelligence (Call & Tomasello, 2008). This ability has often been referred 
to as theory of mind (Onishi & Baillargeon, 2005; Premack & Woodruff, 1978; Wimmer & 
Perner, 1983), and because the ability to infer mental states of others is pivotal to human 
nature, many studies investigate the nature and development of theory of mind (Wellman, 
Cross, & Watson, 2001).

Studying theory of mind

The most influential paradigm to investigate theory of mind is the false-belief task, also 
known as the Sally-Anne task (Baron-Cohen, Leslie, & Frith, 1985; Wimmer & Perner, 1983). 
In this task, children listen to a story with two characters: Sally and Anne. Sally is playing 
with a marble, and before she leaves the room she places the marble in her basket. In Sally’s 
absence, Anne moves the marble and hides it in another location, a box. Then, Sally returns 
and children are asked where she will look for her marble. To pass this task, children need to 
understand that Sally will look for the marble in the basket, whereas in fact the marble is now 
in the box.

Some developmental studies have shown that infants as young as 15 months are already 
susceptible to the mental states of others. Onishi and Baillargeon (2005), for example, have 
shown that 15-month-old infants are surprised when their expectation that an agent will act 
according to her beliefs is violated. In Onishi and Baillargeon’s false belief task, children saw 
that an agent, who believed that a slice of watermelon was stored in a box, was unaware of 
the watermelon being moved to a second box. When the agent reached for the watermelon, 
after it had been moved, the children looked longer at the scene if the agent reached for the 
second box instead of the first. The children looked longer because the agent did not act 
according to her false belief that the watermelon was hidden in the first box. Importantly, 
Onishi and Baillargeon administered an implicit test of theory of mind, using the violation of 
expectation paradigm, which did not require the infants to explicitly reason about the agent’s 
mental states. As the violation of expectation paradigm does not require explicit reasoning, 
the infants’ understanding of mental states would not be obscured by cognitive functions that 
are yet to be developed. 

By the age of 4, children have sufficiently developed cognitive functions to pass the original 
false belief task (Wellman et al., 2001; Wimmer & Perner, 1983). This task requires a deliberate 
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response, as children are explicitly asked where the agent will look for the toy. A deliberate 
response is an additional step that involves effortful processing, which is clearly illustrated 
by a dissociation between two distinct measures of theory of mind within the same sample 
(Clements & Perner, 1994; Ruffman, Garnham, Import, & Connolly, 2001). In Ruffman et al.’s 
study, for example, children looked at the correct location, where the agent falsely believed the 
toy should be, but answered incorrectly that the agent would look at the toy’s actual location. 
To this day, this remarkable finding still does not have one succinct explanation, and there are 
many studies investigating which distinct processes constitute the developmental trajectory 
of theory of mind.

Roughly speaking, there are two clearly opposing camps that have different ideas about 
which processes are involved in the development of theory of mind. One camp argues that 
children’s understanding of mental states undergoes a conceptual change (Gopnik & Wellman, 
1992). Not until children understand that, for example, beliefs do not need to reflect reality, 
do they understand that others can have beliefs that differ from their own. The other camp 
argues that children first need to develop other important cognitive functions that, once 
sufficiently developed, will enable inference of mental states (e.g., Carlson, Moses, & Breton, 
2002; Sabbagh, Xu, Carlson, Moses, & Kang, 2006). These cognitive functions are required 
to support the costly computational processes that are involved in mental state inference. 
Of course, children still need to be able to discern mental states, for example, by means of a 
so-called theory of mind mechanism (e.g., Leslie, Friedman, & German, 2004), or a minimal 
understanding of concepts in general. Accordingly, there seems to be merit in hybrid theories 
as well, combining the theories of the two camps delineated above, as application of theory 
of mind seems to be an effortful process that requires sufficiently complex mental state 
representations. 

Given that application of theory of mind is a costly computational process, it may not be 
surprising that it takes another two years before children, of 5 to 6 years old, start understanding 
that others, too, apply theory of mind (e.g., Miller, 2009). They learn to understand recursive 
structures such as “John thinks that Mary thinks that…” (Perner & Wimmer, 1985). 
Comprehension of such structures requires application of second-order theory of mind, 
which is a challenge for both children and adults (Flobbe, Verbrugge, Hendriks, & Krämer, 
2008; Hedden & Zhang, 2002; Perner & Wimmer, 1985; Qureshi, Apperly, & Samson, 2010; 
Raijmakers, Mandell, Van Es, & Counihan, 2013). Application of higher orders of theory 
of mind would exceed the cognitive resources of most people. The dynamics of declarative 
and procedural memory, for example, would probably not support such complex reasoning. 
Fortunately, in many circumstances second-order theory of mind seems to be the highest 
level of theory of mind that is still advantageous for people to use (De Weerd, Verbrugge, & 
Verheij, 2013). 

Contribution of this dissertation

This thesis describes a detailed investigation of theory of mind in adults, who have sufficient 
declarative and procedural knowledge of mental states to interpret the behavior of self and 
others, in contrasts to infants and children. The thesis therefore contributes to the field in 
at least one obvious way: As adult understanding of mental states has undergone the earlier 
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proposed conceptual changes (Gopnik & Wellman, 1992), the findings reported here can be 
interpreted as a measure of the cognitive functions and resources required to apply theory of 
mind. In other words, the findings in this thesis help shed light on the procedural building 
blocks that constitute inference of mental states. A better understanding of the procedural 
building blocks is important, because it may be of help in both the clinical and practical 
domains. 

Another contribution of this thesis is that it shows how two-player games may be a good 
alternative to test for theory of mind. In contrast to false-belief stories, games can be presented 
many times and in many different configurations to the same individuals. The assumption 
that these games are interpreted in terms of mental states remains implicit in some chapters 
(Chapters 2, 5, and 6). However, Chapters 3 and 4 explicitly test whether two-player games 
require a theory of mind. It turns out that these games are especially successful in varying 
demands on mental state reasoning.

The thesis starts with a broad question in Chapter 2. The question is whether theory of mind 
is a fixed skill, or an ability that is susceptible to improvement by means of supportive measures 
that help structure inference of mental states. Chapters 3 and 4 detail an investigation into the 
computational costs associated with taking either one’s own or someone else’s perspective. 
Most definitions of theory of mind state that it is an understanding of mental states of self and 
others. However, few studies seem to investigate the difference between taking one’s own and 
someone else’s perspective. Chapters 5 and 6 provide a detailed analysis of particular strategies 
that people use when they are reasoning about others’ mental states. These studies show that 
people rather use simple strategies that may not be optimal but yield correct responses in 
most cases. Only when they really have to, do people invest their resources into forming 
complex mental state representations. In other words, people may have the ability to infer 
complex mental states, but still fail or choose not to use it.
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Chapter 2 
 
Integrating recursive application of theory of 
mind in decision making in sequential games

Abstract

In collaborative, competitive, and negotiation situations we need to reason about each other’s 
goals, intentions, beliefs, and desires, which requires a so-called Theory of Mind (ToM). This 
study investigates decision making in which ToM has to be applied recursively: “I think that 
you think that I think…”. Participants were presented with sequential games in which the 
payoff for one player depended on the decisions of another player. Previous studies typically 
found suboptimal decisions in these games. One possible explanation is an overall inability to 
apply recursive ToM. Instead, we argue that suboptimal decisions are caused by unsuccessful 
integration of recursive ToM in the decision making process. This hypothesis is tested by means 
of three experimental manipulations that each should facilitate this integration process. First, 
each player’s decision options are introduced and explained in a stepwise fashion during the 
training phase. Second, participants are prompted to predict the other player’s decision. Third, 
participants are presented with a concrete and realistic task representation that visually cues 
the recursive structure of the decision making problem. The results show that performance 
was better in those conditions that specifically targeted the integration of recursive mental 
states in the decision making process.

Parts of this chapter were previously published in the proceedings of the 32nd and 33rd Annual 
Conference of the Cognitive Science Society (2010, 2011).
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Introduction

Making decisions can be a complicated process, especially when the actions of others have to 
be factored in. To understand, or even predict, the actions of others we need to infer their goals, 
beliefs, desires, et cetera. It is difficult to infer these mental states because we cannot directly 
observe them. Still, children already learn to reason about the mental states of others from the 
age of 4. They develop a so-called theory of mind (ToM), an understanding that others may 
have beliefs that differ from their own and do not need to reflect reality (e.g., Wellman, Cross, 
& Watson, 2001; Wimmer & Perner, 1983). However, making decisions based on mental state 
inferences remains challenging, even for adults (e.g., Flobbe, Verbrugge, Hendriks, & Krämer, 
2008; Hedden & Zhang, 2002; Zhang, Hedden, & Chia, 2012).

Developmental studies have shown that children typically make optimal decisions if they 
are required to infer relatively simple mental states (Flobbe et al., 2008; Raijmakers, Mandell, 
Van Es, & Counihan, 2013). In Raijmaker et al.’s (2013) sequential games, for example, 
children performed well if they had to infer mental states such as “The other player intends 
to stop the game when it is his turn”. In contrast, few children were able to make optimal 
decisions if they were required to infer more complex mental states such as “The other player 
believes that I intend to continue when it is my turn”. Most children could not incorporate such 
second-order, or recursive, beliefs into their decision making process (for similar findings see 
Flobbe et al., 2008).

Some studies have shown that adults, too, find it difficult to make decisions based on 
second-order mental states (Flobbe et al., 2008; Hedden & Zhang, 2002; Johnson, Camerer, 
Sen, & Rymon, 2002; McKelvey & Palfrey, 1992; Verbrugge & Mol, 2008; Zhang et al., 2012). 
In Hedden and Zhang’s (2002) sequential games, for example, adult participants initially did 
not seem to realize that the other player was reasoning about them. As a consequence they 
made suboptimal decisions that were based on inaccurate mental state representations.

(a)

3   4

4   2

2   1

1   3
B C

DA

Player 1Player 1

Player 2

Figure 2.1: Example of a matrix game; adapted from Hedden and Zhang (2002); labels (A – 
D, Player 1 / 2) and arrows are added for illustrative purposes and were not depicted during 
the experiment.

Figure 2.1 depicts an example of Hedden and Zhang’s sequential games, which are so-called 
matrix games. Each cell of a matrix game contains a pair of rewards, or so-called payoffs, that 
range from 1 to 4. The left payoff of a pair is Player 1’s payoff; the right payoff is Player 2’s. 
Both players alternately decide whether to stop the game in the current cell, or to continue it 
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to the next. Each player’s goal is that the game stops in the cell that contains his or her highest 
possible payoff, irrespective of the payoff for the other player. Based on the assumption that 
each player is rational, both players should know that their outcome depends on the decisions 
of the other player: Either player can decide to stop or continue the game when it is their turn. 
Crucially, as each player’s decision is based on beliefs about the next decision, recursive beliefs 
have to be incorporated into the decision making process.

In the game in Figure 2.1, for example, Player 1 should decide to continue the game from 
A to B, as she could have inferred that a rational Player 2 will decide to stop the game in that 
cell. Player 2 would not continue to C, as he would have inferred that a rational Player 1 would 
continue to D, which contains a smaller payoff for him than B. As B contains a higher payoff 
for Player 1 than A, Player 1 should decide to continue from A to B. In sum, Player 1 needs to 
reason about Player 2’s belief about Player 1’s intention, thus applying second-order ToM by 
attributing first-order ToM to Player 2.

Most of the earlier mentioned studies concluded that adults and children do not have 
sufficient ability or cognitive capacity to apply second-order ToM (Flobbe et al., 2008; Hedden 
& Zhang, 2002; Raijmakers et al., 2013; Verbrugge & Mol, 2008; Zhang et al., 2012). Lacking 
the ability to apply ToM recursively, these studies claim, one makes suboptimal decisions that 
are based on inaccurate mental state representations. However, as children typically perform 
well in false-belief tasks that require them to keep track of stories with multiple agents that 
each have their own set of recursive beliefs (e.g., Apperly, Back, Samson, & France, 2008; 
Apperly et al., 2010; Hollebrandse, Hobbs, De Villiers, & Roeper, 2008; Perner & Wimmer, 
1985; Sullivan, Zaitchik, & Tager-Flusberg, 1994; Wimmer & Perner, 1983), it seems that in 
some tasks sufficient ability or capacity is available to apply second-order ToM. We therefore 
hypothesize that suboptimal decisions are due to unsuccessful integration of recursive 
mental states in the decision making process. In many sequential games, participants have to 
attribute recursive mental states to the other player and, on top of that, they have to combine 
these attributions to choose their own best possible course of action. Suboptimal decisions 
arise if the integration of recursive mental states breaks down, even if the second-order 
representations are accurate.

To test whether suboptimal decisions in sequential games are due to unsuccessful 
integration of second-order mental states, we devised three experimental manipulations 
that each should scaffold the integration of mental states: (1) To make participants aware 
of the dependency between all decision points, each subsequent decision is introduced and 
explained in a stepwise fashion during the training phase; (2) To train integration of the other 
player’s mental states, participants are prompted to predict the other player’s decision; (3) To 
make the recursive structure of the decision making problem more salient, participants are 
presented with a new visual task representation. All three manipulations should clarify the 
“who, what, where” while making decisions in sequential games.
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Method

Participants

Ninety-three first-year psychology students (63 female) with a mean age of 21 years (ranging 
between 18 and 31 years) participated in exchange for course credit. All participants had 
normal or corrected-to-normal visual acuity. Informed consent as approved by the Ethical 
Committee Psychology of the University of Groningen was obtained before testing.

Design

The experimental design comprised three factors: training, prompting predictions, and task 
representation. All factors were administered between participants. The experiment consisted 
of two phases: a training phase, followed by a test phase.

Training
The training phase was included to familiarize participants with the rules of sequential games. 
Participants were randomly assigned to one of two training procedures. In one training 
procedure participants were presented with Hedden and Zhang’s (2002) 24 original training 

Zero-order (4) First-order (8) Second-order (8)

Trivial (24)
Stepwise Training

Undifferentiated Training

2   1

4   2

1   3

3   4
B C

DA

Player 1Player 1

Player 2

3   4

4   2
B

A
2   1

4   2 1   4
B C

A

Player 1 Player 1

Player 2

3   4

4   2

2   1

1   3
B C

DA

Player 1Player 1

Player 2

Figure 2.2: Schematic overview of the Undifferentiated and Stepwise training procedures. 
Undifferentiated training consists of 24 so-called trivial games (see text for explanation). 
Stepwise training consists of 4 zero-order games, 8 first-order games, and 8 second-order 
games. The actual training items all had different payoff distributions.
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games (see Figure 2.2; top panel). These training games are considered easier to play than 
truly second-order games such as in Figure 2.1, because Player 2 does not have to reason 
about Player 1’s last possible decision: Player 2’s payoff in B is either lower or higher than 
both his payoffs in C and D. Consequently, Player 1 does not have to attribute ToM to Player 
2. These games are therefore referred to as trivial games by Hedden and Zhang. This training 
procedure will henceforth be referred to as Undifferentiated training, as all games have three 
decision points. 

In the other training procedure participants were presented with three blocks of games 
that are simple at first and become increasingly more complex with each subsequent block 
(see Figure 2.2; bottom panel). This procedure will henceforth be referred to as Stepwise 
training. The first block consisted of 4 games with just one decision point. These games are 
so-called zero-order games, as they do not require application of ToM. The second block 
consisted of 8 games with two decision points. These games require application of first-order 
ToM, as the participant is required to reason about the other player. The third block consisted 
of 8 games with three decision points that require application of second-order ToM, as the 
participant has to reason about the other player, and take into account that the other player is 
reasoning about them. 

We hypothesize that the Stepwise training procedure provides scaffolding to support 
representation of increasingly more complex mental states. Stepwise introduction, explanation, 
and practice of each additional decision point helps participants integrate mental states of 
increasing complexity into their decision making process. 

Prompting predictions 
The second factor, prompting participants for predictions, was manipulated in the test phase. 
Hedden and Zhang (2002) prompted their participants to predict Player 2’s decision (in B), 
before making a decision themselves. By prompting participants for predictions, participants 
were explicitly asked to take the other player’s perspective, and we hypothesize that these 
prompts helped participants to integrate the other player’s perspective in their decision 
making process. 

We tested this hypothesis by means of two test blocks. In the first, we asked half of the 
participants, assigned to the Prompt group, to predict Player 2’s move before making their 
own decision. Participants assigned to the No-Prompt group, in contrast, were not explicitly 
asked to predict Player 2’s move. The second test block was added to test whether prompting 
had long-lasting effects on performance. No participant was asked to make predictions, and 
performance differences between the two groups would indicate lasting effects of prompting.

Task representation 
The third factor is task representation. Before the training phase started, participants were 
assigned to one of two task representations, which did not change anymore during the 
remainder of the experiment. The Matrix Game was one of these task representations, 
and we devised a second. The new task representation was devised to clarify the recursive 
structure of the decision making problem. Depicted in Figure 2.3, the new task representation 
shows a more intuitive display of who decides where and what the consequences of each 
decision are. We argue that this new representation, henceforth referred to as Marble Drop, 
provides scaffolding that supports the integration of decisions and underlying mental states. 
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Importantly, this representation is isomorphic to matrix games and thus requires the same 
reasoning.

Figure 2.3 depicts examples of zero-order, first-order, and second-order Marble Drop 
games. Participants are told that a white marble is about to drop, and that its path can be 
manipulated by removing trapdoors. Their goal is to let the white marble drop into the bin 
containing the darkest possible marble of their target color, blue in these example games, by 
controlling only the blue trapdoors. Player 2’s goal is to obtain the darkest possible orange 
marble, but Player 2 can only control the orange trapdoors. The marbles are ranked from 
light to dark, with darker marbles preferred over lighter marbles, yielding payoff structures 
isomorphic to those in matrix games. 

Stimuli

Payoffs 
The payoffs in matrix games are numerical, ranging from 1 to 4, whereas the payoffs in Marble 
Drop games are color-graded marbles that have a one-to-one mapping to the numerical values 
in the matrix games. The colors of the marbles are four shades of orange and blue, taken from 
the HSV (i.e., hue, saturation and value) space. A sequential color palette is computed by 
varying saturation, for a given hue and value. This results in four shades (with saturation from 
.2 to 1) for each of the colors orange (hue = .1, value = 1) and blue (hue = .6, value = 1). 

Payoff structures 
The payoff structures are selected so that the order of ToM reasoning mastered by the 
participants can be derived from their first decision1. The total set of payoff structures, 
balanced for the number of decisions to continue or stop a game, is limited to 16 items. These 
items are listed in Appendix A. Detailed discussion of the rationale behind the exclusion 

1	  We look at the entire set of first decisions, as an individual decision cannot discriminate between multiple 
strategies. For example, in one particular game both guessing and applying second-order ToM might yield a correct 
decision. However, by looking at the entire set of decisions, we can discriminate guessing from applying second-order 
ToM, as guessing would only yield a correct decision in 50% of the games.

(a) (b) (c)

Figure 2.3: Examples of zero-order (a), first-order (b), and second-order (c) Marble Drop 
games. The blue player (i.e., Player 1) has to obtain the darkest possible blue marble, the 
orange player (i.e., Player 2) the darkest possible orange marble. The dashed lines are added 
for illustrative purposes and represent the trapdoors that proficient ToM players should 
remove to obtain their darkest possible marble. See text for additional explanation.
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criteria is given in Appendix B.

Procedure

To familiarize participants with the rules of sequential games, they were first presented 
with a training block that either consisted of Undifferentiated training or Stepwise training. 
The instructions, which appeared on screen, explained how to play sequential games and 
what the goal of each player was. The instructions also mentioned that participants were 
playing against a computer-simulated player, as Hedden and Zhang (2002) have shown that 
inclusion of a cover story did not affect ToM performance. Each training game was played 
until either the participant or the computer-simulated player decided to stop, or until the 
last possible decision was made. After each training game participants were presented with 
accuracy feedback indicating whether the highest attainable payoff was obtained. In case of 
an incorrect decision, an arrow pointed at the cell / bin that contained the highest attainable 
payoff. As the feedback never referred to the other player’s mental states, participants had to 
infer these themselves.

The two test blocks consisted of second-order games. As mentioned above, the procedure 
for participants in the Prompt and No-Prompt groups differed in the first test block. 
Participants in the Prompt group were first asked to enter a prediction of Player 2’s decision 
before they were asked to make a stop-or-continue decision at their own decision point. 
Participants in the No-Prompt group, in contrast, were not asked to make predictions. They 
were only asked to make decisions. Accuracy feedback was presented both after entering a 
prediction and after entering a decision, but the arrow was not shown anymore in the test 
blocks. This block consisted of 32 trials; each of the 16 payoff structures was presented twice, 
but not consecutively as the items were presented randomly.

The second test block was the same for all participants. They were asked to make decisions 
only.

Results and discussion

To account for multiple sources of random variation (i.e., participants and payoff structures 
were both sampled from a larger population), the data were analyzed by means of linear mixed-
effects (LME) models (Baayen, 2008; Baayen, Davidson, & Bates, 2008). We included random 
intercepts to allow the intercepts of the regression models to vary across participants and items. 
Random slopes were included to allow the effects (i.e., slopes) of training, prompting, and 
task representation to vary across items (Barr, Levy, Scheepers, & Tily, 2013). The correctness 
of the decisions was analyzed by means of logistic LMEs, as correctness of decisions is a binary 
variable. These models are provided by the lme4 package (version 0.999375-42; Pinheiro & 
Bates, 2000) in R (www.r-project.org, version 3.0.1).  Two separate models were fit to the data 
because the factors training and prompting were manipulated in different blocks. All figures 
depict means and standard errors, which are represented by error bars.
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Effect of training and representation

Type of training was manipulated before either test block was administered. Its effect on the 
correctness of decisions was analyzed in the first test block, together with the effect of task 
representation. Figure 2.4 depicts the mean proportions of correct decisions.

As can be seen in Figure 2.4, the effect size of Stepwise training (in contrast to 
Undifferentiated training) significantly varied with task representation, χ2(1) = 6.4, p = 0.011. 
Figure 2.4 shows that stepwise training had a significant positive effect on the correctness of 
decisions, χ2(1) = 12.1, p < 0.001, but this effect was driven by participants assigned to Marble 
Drop games, β = 2.063 (SE = 0.491), z = 4.203, p < 0.001. In fact, the effect of stepwise training 
was not significant for participants assigned to Matrix Games, β = .427 (SE = .432), ns. 

Even though there was no significant main effect of task representation, participants 
assigned to stepwise training did have a significantly higher probability of making a correct 
decision if they were assigned to Marble Drop games instead of Matrix Games, β = 1.307 (SE 
= 0.483), z = 2.707, p = 0.007. Participants assigned to undifferentiated training did not have 
an advantage if they were assigned to Marble Drop games, β = -.326 (SE = .439), ns. In other 
words, the effectiveness of the Marble Drop task representation, positive in any case, varied 
with the type of training received by the participants.

In sum, both the Stepwise training procedure and the Marble Drop task representation 
positively affected the probability of making a correct decision, the latter factor primarily by 
means of an interaction. 

Effect of prompting

As prompting was manipulated in the first test block, we analyzed its short-term effect during 
the first test block and its longer-term effect in the second test block. Figure 2.5 depicts the 
accuracy, or proportion correct, of the decisions and predictions.

 Log-likelihood ratio comparisons indicated that the factor task representation did not 
make the models fit the decisions better. Therefore, we report the statistics of a full factorial 
model that includes terms for prompting, test block, and an interaction between the two. 
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Figure 2.4. Mean proportions correct decisions; depicted separately for Undifferentiated 
training (light grey) and Stepwise training (dark grey) for both Matrix Games and Marble 
Drop games. 
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As can be seen in Figure 2.5, the extent to which the proportion of correct decisions 
increased from the first test block to the second depended on whether participants were 
prompted to predict the other player’s decision, χ2(1) = 12.2, p < 0.001. There was a significant 
main effect of test block, χ2(1) = 78.8, p < 0.001, but it was mainly driven by the No-Prompt 
group, β = 1.072 (SE = 0.12), z = 9.96, p < 0.001. The probability of making a correct decision 
increased just slightly in the Prompt group, β = .351 (SE = .156), z = 2.256, p = .024.

There was also a main effect of prompting participants for predictions, χ2(1) = 13, p < .001. 
However it was mostly present in the first test block, as the difference between the prompting 
conditions in the second test block was small and just significant, β = .639 (SE = .314), z = 
2.032, p = 0.04. Thus, during Test Block 2, participants that were not prompted for predictions 
in Test Block 1 performed almost as well as participants that were prompted. Nevertheless, 
prompting did have a stronger positive effect in the short term during Test Block 1, β = 1.36 
(SE = .304), z = 4.467, p < 0.001.

Figure 2.5 also shows that participants performed close to ceiling with respect to their 
predictions, which also require second-order theory of mind. However, their proportion of 
correct decisions was significantly lower, t(46) = -3.1827, p < 0.01. Thus, a correct prediction 
did not always yield a correct decision, which implies that it is not trivial to incorporate a 
second-order inference in the decision making process. This is remarkable, as the application 
of theory of mind is required when making a prediction, and not anymore when a decision 
has to be made afterwards. Nevertheless, this finding supports our hypothesis that integration 
of mental states, when making decisions, is the crux of suboptimal performance.

General conclusions

In this study we investigated decision making in the context of sequential games. Crucially, 
participants were asked to make decisions that required them to infer second-order, or 
recursive, mental states. Previous studies have found suboptimal performance in such games 
and concluded that incorrect decisions were caused by insufficient ability to apply second-
order ToM (Flobbe et al., 2008; Hedden & Zhang, 2002; McKelvey & Palfrey, 1992; Raijmakers 
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et al., 2013; Zhang et al., 2012). Other studies, however, have found that participants have few 
difficulties applying second-order ToM if they are not required to make decisions (Flobbe et 
al., 2008). We therefore argue that the crux of suboptimal performance in sequential games is 
the integration of second-order ToM in the decision making process. Our results confirm this 
idea and show that decision making in sequential games can be improved by scaffolding the 
integration of second-order ToM.

Our hypothesis is best supported by the finding that correct predictions do not always 
result in correct decisions. Interestingly, a prediction of what the other player would do 
requires the application of second-order ToM, as participants have to reason about the other 
player, who in turn reasons about their last possible decision. Participants performed almost 
at ceiling when asked to predict the other player’s decision. In other words, the participants 
had sufficient ability to apply second-order ToM. Nevertheless, they performed significantly 
worse when asked to make a decision based on their predictions. This finding implies that 
participants found it difficult to integrate second-order ToM in the decision making process, 
not to apply second-order ToM.

The other findings, that decision making improves by providing participants with Stepwise 
training, prompts for predictions, and the Marble Drop task representation, support our 
hypothesis as well. As mentioned previously, these conditions should scaffold the integration 
of recursive mental states. In Stepwise training, participants practice how to make decisions 
based on mental states of increasing complexity. When prompted to predict the other player’s 
decision, participants are asked to take the other player’s perspective, which is an essential 
step that should precede and be the basis of their own decision making. The Marble Drop 
task representation provides clear visual cues as to how the games are structured. In fact, a 
previous eye tracking study (Meijering, Van Rijn, Taatgen, & Verbrugge, 2012) has shown 
that participants use these cues while reasoning. For example, the participants in Meijering 
et al.’s (2012) study kept fixating the trapdoors during the entire experiment, even though the 
trapdoors remained a constant factor that did not change across the training and test phases. 
Meijering et al. argued that the trapdoors were used as placeholders for mental states, thereby 
providing scaffolding for the decision making process. In other words, the Marble Drop task 
representation, together with the other factors, facilitated the integration of second-order 
ToM in the decision making process.

The effects were most prominent in the first test block. Participants who were not assigned 
to stepwise training, who were not prompted to take the other player’s perspective, and 
who played abstract Matrix Games during the entire experiment, did learn in the long run 
how to incorporate complex mental states into their decisions. In the second-test block the 
differences in performance between the conditions failed to reach significance. Thus, it seems 
that participants benefitted most from supporting structure early on in the task when they 
had not yet developed a strategy for which their cognitive resources were sufficient, as we will 
explain below. 

Before we continue with a cognitive explanation, we would first like to address the concern 
that people were playing against a computer-simulated player instead of a real player. Based 
on Hedden and Zhang’s (2002; 2012) findings we did not construct a cover story to make 
participants believe they were playing against a real player. In Hedden and Zhang’s study it did 
not matter whether participants thought to be playing against a real or a computer-simulated 
player. Furthermore, the level of intelligence participants attributed to the real player did not 
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affect their default mental model of the other player. In other words, the participants were 
aware of the nature of the other player, but that awareness did not affect what beliefs, goals, 
and intentions they attributed to that player. Moreover, other studies have shown, too, that 
people do attribute (human) mental states to computer-simulated players (Flobbe et al., 2008; 
Meijering et al., 2012; Meijering, Van Rijn, Taatgen, & Verbrugge, 2013). 

Given that sequential games evoke the application of (recursive) ToM, we argue that our 
findings are generalizable to other ToM settings, including everyday social interactions. Still, 
generalizability depends on the extent to which supportive measures are effective in reducing 
demands on cognitive resources. A slightly different notion of generalizability is the extent to 
which experience on our task will improve application of ToM in other domains. Here, we 
are more conservative because Flobbe et al.’s (2008) study has shown that performance on one 
particular ToM task does not necessarily correlate with performance on another ToM task. As 
Flobbe et al. have shown that application of ToM may not be a unitary skill, it is conceivable 
that training in one ToM task does not necessarily generalize to other ToM tasks (also see 
Thoermer, Sodian, Vuori, Perst, & Kristen, 2012).

A cognitive explanation for the facilitative effects of training, prompting, and task 
representation may be in terms of reducing demands on executive functions. Examples of 
executive functions are planning, resistance to interference, set-shifting, and working memory, 
which all help to combine alternate perspectives and find the best possible decision (Apperly 
& Butterfill, 2009; Bull, Phillips, & Conway, 2008; Dumontheil, Apperly, & Blakemore, 2010). 
Our experimental manipulations may have reduced demands on executive processes in three 
ways. First, in the Stepwise training condition, participants received naturally delineated 
chunks of instruction and training of each successive ToM-order. A clear outline of the task 
at hand helped planning and reduced demands on working memory. Second, by prompting 
for predictions, we may have structured participants’ reasoning by providing them with an 
efficient method of ‘solving’ games. A structured method may not only help planning and 
thereby reduce demands on working memory; it may also help set-shifting, that is, switching 
between goals, beliefs, and intentions. Third, the Marble Drop task representation visually 
cued possible actions and consequences, and provided placeholders for mental states. These 
cues and placeholders allowed participants to preserve working memory capacity and help 
them planning their own actions.

Support for these explanations comes from studies that have shown that application of 
ToM is an effortful process (e.g., Apperly et al., 2010; Lin, Keysar, & Epley, 2010). In Lin 
et al.’s (2010) study, for example, working memory capacity was positively correlated with 
efficiency in applying ToM. Participants with low working memory capacity were less efficient 
in applying ToM than participants with high working memory capacity. Moreover, a second 
experiment in Lin et al.’s study demonstrated that participants’ ability to apply ToM was 
significantly reduced by a secondary task. These findings show that even though people may 
have the capacity to apply ToM, they may fail in correctly using ToM, which was already 
noted by Keysar et al. (2003). Lin et al.’s findings imply that, the other way around, efficiency 
may improve if demands on working memory, and other executive functions, are reduced. 
Our results seem to corroborate this notion.

A similar explanation has been proposed for suboptimal behavior in the multitasking 
setting. Borst et al. (2010a; 2010b) have shown that multitasking in itself is not difficult, but 
that instead working memory constraints cause the often-claimed difficulties associated with 
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multitasking. If both tasks cause high working memory load, performance breaks down. 
However, performance does not deteriorate if at most one of the tasks causes high working 
memory load. By reducing working memory load in our task, participants had more freely 
available cognitive resources to incorporate mental states into their decision making process 
(see also Van Rij, Van Rijn, & Hendriks, 2010; 2013).

To conclude, decision making can be a complex task, depending on the variables involved. 
In this study, decisions were dependent on mental states. Participants had to apply second-
order ToM and use the outcome as a basis for their decision making. This proved especially 
difficult: Correct predictions, which required inference of second-order mental states, did not 
always result in correct decisions. We argue that participants failed to make optimal decisions 
because they had difficulties integrating the complex mental states. Our experimental 
manipulations specifically and successfully targeted this integration process, showing that 
decision making on the basis of mental states appears to be flexible in the sense that it is 
susceptible to improvement. Generalizing our findings to everyday life, one could argue that 
the complex decision making that we engage in in many social settings is a skill that we can 
develop. We can improve it by taking measures that help us incorporate the mental states of 
others.
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Appendix A

The table below lists the payoff structures that were used in the experiment. The prediction 
and decision columns list whether the correct responses were either to stop (i.e., 0) or to move 
(i.e., 1) at the corresponding decision points.

Payoffs Player 1   Payoffs Player 2    
A B C D A B C D Prediction Decision
Zero-order payoff structures
1 3 3 2 1
3 1 2 1 0
4 2 2 4 0
3 4 2 4 1
First-order payoff structures
2 1 3 1 2 3 1 1
2 1 3 3 2 1 0 0
2 3 1 1 2 3 1 0
2 3 1 3 2 1 0 1
3 2 4 2 3 4 1 1
3 2 4 4 3 2 0 0
3 4 2 2 3 4 1 0
3 4 2 4 3 2 0 1
Second-order payoff structures
3 1 2 4 2 3 4 1 0 0
3 1 2 4 4 2 3 1 0 0
3 2 1 4 1 3 4 2 0 0
3 2 1 4 4 2 3 1 0 0
3 4 1 2 1 3 2 4 1 0
3 4 1 2 2 3 1 4 1 0
3 4 1 2 3 2 1 4 1 0
3 4 1 2 4 2 1 3 1 0
3 4 1 2 1 3 4 2 0 1
3 4 1 2 2 3 4 1 0 1
3 4 1 2 3 2 4 1 0 1
3 4 1 2 4 2 3 1 0 1
3 1 2 4 2 3 1 4 1 1
3 1 2 4 4 2 1 3 1 1
3 2 1 4 1 3 2 4 1 1
3 2 1 4 4 2 1 3 1 1
Trivial payoff structures
2 4 3 1 1 2 4 3 1 1
3 4 2 1 1 2 3 4 1 0
2 1 4 3 4 3 1 2 0 0
3 4 1 2 4 3 1 2 0 1
2 3 4 1 1 2 3 4 1 1
3 4 1 2 4 3 2 1 0 1
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Payoffs Player 1   Payoffs Player 2    
A B C D A B C D Prediction Decision
2 1 3 4 4 3 1 2 0 0
3 4 2 1 1 2 4 3 1 0
3 4 2 1 4 3 2 1 0 1
2 1 4 3 4 3 2 1 0 0
3 4 1 2 1 2 4 3 1 0
2 4 3 1 1 2 3 4 1 1
3 4 2 1 4 3 1 2 0 1
3 4 1 2 1 2 3 4 1 0
2 3 4 1 1 2 4 3 1 1
2 1 3 4 4 3 2 1 0 0
3 2 4 1 4 3 1 2 0 0
2 4 1 3 4 3 2 1 0 1
2 1 4 3 1 2 3 4 1 1
3 4 1 2 4 1 2 3 1 0
2 1 3 4 1 2 4 3 1 1
2 3 1 4 4 3 2 1 0 1
3 4 2 1 4 1 2 3 1 0
3 1 4 2 4 3 2 1 0 0
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Appendix B

Payoff structures are excluded if Player 1’s payoff in A is either a 1 or a 4, because Player 1 
would not need to reason about the Player 2’s decision. It is obvious that Player 1 should 
continue the game if his payoff in A is a 1 and stop if his payoff in A is a 4. The game in Figure 
B.1b is an example of a game in which Player 1 should decide to stop in A. In line with Hedden 
and Zhang (2002), we focused on so-called 2- and 3-starting games, associated with payoff 
structures in which Player 1’s first payoff was a 2 or a 3, respectively.

(b) (c)

2   1

4   2

1   3

3   4
B C

DA
4   1

2   3

3   2

1   4
B C
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Player 1Player 1
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Player 1Player 1

Player 2

Figure B.1: Two example matrix games. The game in a is a so-called trivial game. See text 
for explanation. The game in b does not require any ToM reasoning at all, because Player 1’s 
maximum payoff is already available in A. 

(b)(a)

We also excluded payoff structures in which Player 2’s payoff in B was either a 1 or a 4, 
because Player 2 would not need to reason about Player 1’s last possible decision between C 
and D. Accordingly, first-order reasoning on the part of Player 1 would suffice.

Of the remaining payoff structures, we excluded the so-called trivial ones in which Player 
2’s payoff in B was either lower or higher than both his payoffs in C and D. Figure B.1a depicts 
an example of such a game: Player 2 does not need to reason about Player 1’s last possible 
decision, as his payoffs in C and D are both more preferable than his payoff in B.

The next two exclusion criteria are based on the type of Player 2 that a participant could be 
reasoning about. In line with Hedden and Zhang, we distinguished between a hypothesized 
zero-order Player 2 and a hypothesized first-order Player 2. Hedden and Zhang consider these 
Player 2 types to be either myopic or predictive, respectively. A participant, always assigned to 
the role of Player 1, might be reasoning about a zero-order Player 2, which would not reason 
about the participant’s last possible decision. Hedden and Zhang consider such a Player 2 to 
be myopic, as it only considers Player 2’s own payoffs in B and C. In contrast, a participant 
might be reasoning about a hypothesized first-order Player 2, which does reason about the 
participant’s last possible decision. 

As Player 1’s decision depends on Player 2’s decision, payoff structures that yield the 
same answer for zero-order and first-order Player 2s cannot inform us on the level of ToM 
reasoning on the part of Player 1. These payoff structures are considered non-diagnostic, and 
are therefore excluded from the final set of stimuli. In contrast, Hedden and Zhang included 
these payoff structures as long as the decision (and thus prediction) of Player 2’s move at the 
second decision point was opposite for imagined zero- and first-order Player 2s. As half of the 
participants were not prompted for predictions in the first test block and none of them in the 
second test block, we had to exclude these items.
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We selected a final set of stimuli, which we were able to (double-)balance for both the 
number of stop and continue decisions of Player 1 and the number of stop and continue 
decisions of Player 2. As this was only possible for 3-starting games, we excluded the 2-starting 
games. This left us with 16 unique payoff structures, all 3-starting games.

Using the same criteria as mentioned above, we selected 4 zero-order and 8 first-order 
payoff structures for the Stepwise Training condition. These training payoff structures, as well 
as the 16 second-order payoff structures, are listed in Appendix A. The trivial games used 
in the Undifferentiated Training condition, which were described earlier, are also listed in 
Appendix A.
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Chapter 3 
 
Reasoning about self versus others: Changing 
perspective is hard

Abstract

To understand others, we need to infer their mental states, such as beliefs, desires, and 
intentions. Some developmental studies have suggested that general reasoning ability plays 
a crucial role in inference of mental states. In contrast, we show that the most important 
factor for successful inference of mental states is the ability to change perspective. In our 
experiment, participants either had to make a decision, or predict how another person would 
make the exact same decision. Crucially, the required steps to solve both problems were the 
same. Nevertheless, participants made more mistakes and required more time while making 
predictions instead of decisions. This finding implies that perspective taking, while making 
predictions, employs computational processes that are unique to the mental aspects of a 
problem.

This chapter was submitted to a journal where it is currently under review.
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We are living in a social world in which many of our daily activities involve interactions 
with others. These interactions can take many forms: negotiating a higher salary, gossiping 
with a friendly neighbor, bluffing in a card game, or having a conversation via Facebook 
or Twitter. Irrespective of form, a social interaction requires the ability to infer another’s 
knowledge, beliefs, desires, and intentions. For example, if we are bluffing in a game of poker 
we are reasoning about what the other player may think our intentions are if we raise the bet. 
Reasoning about beliefs and other mental states requires a so-called Theory of Mind (ToM), 
which develops around the age of 4 (Wellman, Cross, & Watson, 2001; Wimmer & Perner, 
1983). That is relatively late considering that infants as young as 7 months already seem 
to be susceptible to the beliefs of others (Kovács, Téglás, & Endress, 2010; also see O'Neill, 
1996; Onishi & Baillargeon, 2005). Furthermore, the process of putting oneself in another’s 
shoes seems to be almost effortless and automatic (Cohen & German, 2010; Kovács et al., 
2010; Ramsey, Hansen, Apperly, & Samson, 2013; Samson, Apperly, Braithwaite, Andrews, & 
Bodley Scott, 2010). Given these findings, it is surprising that it takes so long before children 
learn to infer the beliefs of others and that adults still frequently fail to use ToM (Apperly et 
al., 2010; Keysar, Lin, & Barr, 2003; Lin, Keysar, & Epley, 2010).

In recent years, some developmental studies have investigated whether preschoolers’ 
difficulties with ToM are specific to the domain of mental states (Leekam, Perner, Healey, 
& Sewell, 2006; Perner & Leekam, 2008; Sabbagh, Xu, Carlson, Moses, & Kang, 2006). They 
set out to investigate whether problems in ToM tasks arise because preschoolers have to put 
themselves into another’s shoes, or because the underlying logical problems in these tasks 
require cognitive functions that have not yet matured. The preschoolers were presented 
with two tasks. In one, the false-belief task, the preschoolers were presented with a story in 
which a person, call her Anne, stored a toy in a box before leaving the room. While Anne was 
away, a second person, Bob, moved the toy to another location without Anne being aware 
of it. After Anne returned, the preschoolers were asked where she would look for the toy. To 
answer correctly they had to reason about Anne’s false belief that the toy was still in the box. 
Performance in this task was compared with performance on the so-called false-sign task, 
which has the same logical structure but does not involve mental states. A toy is stored in one 
location, and a sign is pointing at that location. Next, the toy is moved to another location, but 
the sign is still pointing at the original location. After the story had been told, the preschoolers 
were asked to indicate where the toy should be according to the sign. In this task, children did 
not have to reason about mental states (i.e., a false belief), but they did have to refrain from 
indicating the actual location of the toy, similar to the false-belief task. Because performance 
in this task correlated with performance in the false-belief task, it seemed that preschoolers’ 
difficulties in understanding false beliefs were not solely confined to mental states (Leekam et 
al., 2006; Sabbagh et al., 2006). In fact, performance on both tasks correlated with measures of 
general reasoning ability (Sabbagh et al., 2006), which suggests that inference of mental states 
suffered from limited capacity of general cognitive functions, not ToM proficiency (also see 
Bloom & German, 2000).

These findings may seem compelling, but why then do adults, whose general cognitive 
functions have matured, still frequently fail to apply ToM to interpret the behavior of others? 
Adults have sufficiently developed general cognitive functions to be able to comprehend 
many logical problems. Yet, it seems that they reflexively reason about their own beliefs when 
interpreting the behavior of others (Apperly et al., 2010; Keysar et al., 2003; Lin et al., 2010). 
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We therefore argue, in contrast to the developmental studies, that people do find it difficult to 
put themselves in another’s shoes. The preschoolers in the developmental studies may have 
had such difficulties too, but they did not have sufficiently matured general reasoning ability 
to understand the logical structure of false beliefs and false signs, to begin with. In contrast, 
adults do have mature general reasoning ability and therefore are the appropriate population 
to investigate the role of perspective taking during inference of mental states: If adults 
understand the logical structure of a given ToM task but find it difficult to put themselves 
in another person’s shoes, unsuccessful application of ToM would reflect a deficiency of a 
specialized function, not a deficiency of general reasoning ability. 

To test specifically whether adults find it difficult to put themselves in another’s shoes, we 
devised a task in which they either had to make a decision themselves, or had to predict how 
another would make the very same decision (Appendix A). The task consisted of two-player 
games in which the participant and a computer-simulated player alternately made decisions. 
There were two conditions and the only difference between the conditions was the required 
level of perspective taking; all other task aspects were the same. Importantly, this was a direct 
and specific test of perspective taking, because participants were not asked to reason about 
distinct types of representations, which was the case in the false-belief and false-sign tasks. 
Crucially, the steps to ‘solve’ the games were the same in both conditions, irrespective of the 
required level of perspective taking. The only difference for a participant was the instruction, 
or prompt, given at the start of each game. In one condition the prompt was “Decide” what 

Figure 3.1: Screenshots of isomorphic Decision (left panel) and Prediction (right panel) 
games. The arrows were added for illustrative purposes and show that the games require 
the same comparisons to obtain the best possible outcome. In these particular games, the 
participant is assigned the target color orange and has to obtain as many orange diamonds as 
possible. The game in the left panel prompts the participant to make a decision: “Decide”. To 
make a decision, the participant needs to switch perspective once, as his outcome depends 
on the decision of the other player, who decides at the bottom-right trapdoors and whose 
goal is to obtain as many blue diamonds as possible. The game in the right panel prompts 
the participant to predict the other player’s decision: “Predict”. The participant needs to 
switch perspectives twice: The first time to reason about the other player’s intention at the 
topmost trapdoors, and a second time to switch back to his own perspective, because the 
other player’s decision depends on the participants decision at the bottom-right trapdoors.
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you would do in this game, and in the other condition it was “Predict” what the other player 
would do in this game (see Figure 3.1). Again, the steps to arrive at a decision or a prediction 
were the same, but it mattered whether participants were asked to execute these steps from 
their own perspective or from the other’s, as we will show.

At the start of the experiment, each player was assigned their own target color (orange or 
blue) and the goal was to obtain as many target-colored diamonds as possible (Appendix A). 
In each game a white marble dropped into a contraption (see Figure 3.1) and both players 
could influence its path by opening the trapdoors depicted in their target color. Each player 
obtained the target-colored diamonds located in the bin into which the marble dropped. Both 
players had to reason about one another, because the other player’s decisions affected their 
outcomes. In games such as the one in the left panel of Figure 3.1, for example, participants 
were prompted to make a decision at the topmost trapdoors. They could infer that their best 
possible decision is to open the right-side trapdoor, because the other player’s intention is to 
open the left-side trapdoor, as his goal is to obtain as many blue diamonds as possible: He 
would obtain 3 blue diamonds, and the participant would obtain 4 orange diamonds. In these 
so-called Decision games participants had to switch perspective just once while they were 
reasoning about the other player. In so-called Prediction games, however, participants had to 
switch perspective twice (Figure 3.1; right panel): To predict the other player’s decision at the 
topmost trapdoors, they had to switch from their own perspective to that of the other player. 
Furthermore, as the topmost decision was based on their own decision at the bottom-right 
trapdoors they had to switch back again from the other player’s perspective to their own. In 
other words, participants had to reason about recursive mental states: “the other player thinks 
that I intend to open the left-side trapdoor, as he knows that my goal is to obtain the highest 
possible number of orange diamonds”. Importantly, the Decision and Prediction games were 
structurally equivalent: The order of the decisions was the same in both types of games, as was 
the distribution of diamonds. Thus, participants had to make the same comparisons between 
the same distributions of diamonds, as can be seen in Figure 3.1, irrespective of the prompt 
given at the start. The only difference between the games was the perspective from which to 
make the comparisons. 

In this study, we are comparing two hypotheses. Based on the earlier mentioned 
developmental studies, one would expect the response patterns to be the same in Decision 
and Prediction games, because these games require the same steps to ‘solve’ them (see Figure 
3.1). As a consequence, Decision and Prediction games induce the same demands on general 
reasoning ability. The accuracy and response times are therefore not expected to differ, which 
makes this the null-hypothesis. The other hypothesis is that adults will perform differently 
in Decision and Prediction games, because these types of games differ with respect to the 
required level of perspective taking. A previous study has suggested that people do switch 
between perspectives each time they fixate a new set of trapdoors (Meijering, Van Rijn, 
Taatgen, & Verbrugge, 2012). Based on that study, we expect the accuracy and response times 
to differ, because the number of switches between perspectives differs between Decision and 
Prediction games.

As can be seen in Figure 3.2, both the accuracy (i.e., the proportion of correct responses) 
and the response times indicate that it is more difficult to reason about someone else's 
decision-making than making the same decisions oneself (Appendix B). In the Prediction 
games, in comparison to the Decision games, accuracy is significantly lower, χ2(1) = 44.77, p  
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< 0.001, and the response times are significantly longer, χ2(1) = 4.97, p  < 0.05. These findings 
imply that the reasoning processes were not symmetrical in the two types of games. We 
argue that the asymmetrical response patterns are due to differential demands on perspective 
taking, because the games are isomorphic otherwise. In prediction games participants had to 
switch perspectives twice, and as a consequence they made more mistakes and needed more 
time to produce a response. We accounted for the fact that Decision and Prediction games 
were presented in an intermixed fashion, which may have caused asymmetric reorientation 
costs while switching back and forth between Decision and Prediction games. However, this 
reorientation factor was not significant, nor was any interaction with it. Thus, the demand 
on perspective taking was the sole factor determining accuracy in Decision and Prediction 
games. 

There is a ‘smart’ strategy to play these games, and that is to pretend to switch between 
colors, reasoning as if one is the ‘orange’ player in some games (e.g., Decision games) and 
the ‘blue’ player in the others (e.g., Prediction games). By using this strategy the participants 
would have reduced the required level of perspective taking of all games to level one. Strikingly, 
the participants did not use this strategy, as the accuracy and response times differ between 
Decision and Prediction games. Our findings therefore show that the participants were 
strongly committed to their own target color and reasoned from their own perspective when 
prompted to “Decide” and from the other player’s perspective when prompted to “Predict”. 
In fact, the difference in accuracy and the ratio of associated response times did not become 
any smaller during the experiment (Appendix B). This is remarkable as participants were 
presented with 112 games in total, which is ample opportunity to adopt a smart strategy. The 
fact that the differences did not become smaller is a strong indication that the participants 
committed to their own target color and engaged in perspective taking, which caused 
differential demands on mental state reasoning in the Decision and Prediction games.

There are several possible explanations for differential response patterns in Decision and 
Prediction games. For example, the process of modeling the other player’s mental states may 
require cognitive functions that are not as well developed as the cognitive functions to model 
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Figure 3.2: The left panel depicts the mean accuracy of decisions (grey) and predictions 
(black) across participants. The right panel depicts the actual response times on a 
logarithmic scale, also averaged across participants. The solid lines depict fits of linear 
mixed-effects regression models.
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one’s own mental states (Birch & Bloom, 2004). The process of modeling the other player’s goals 
and intentions could therefore be prone to errors, yielding incorrect predictions. A related 
explanation is that people fall prey to the egocentricity bias and consequently interpret the 
behavior of the other player according to their own goals and intentions (Birch & Bloom, 2007; 
Keysar et al., 2003). Overcoming this bias may be difficult and cause high cognitive demands, 
as one has to inhibit one’s own mental states (German & Hehman, 2006; Samson, Apperly, 
Kathirgamanathan, & Humphreys, 2005). Lastly, a representation of the other player’s mental 
states could intrinsically be more complex (Gopnik & Wellman, 1992), because the mental 
states have to be labeled as belonging to that player. One’s own mental states, in turn, do not 
have to be labeled. In any case, each of these possible factors is a consequence of perspective 
taking, as perspective taking alone distinguishes between Decision and Prediction games. 

To conclude, the results show that reasoning about someone else's decision-making is more 
difficult than making the same decisions oneself, even if the conditions are equivalent. The 
steps to arrive at either a decision or a prediction were the same in this study, but apparently 
participants engaged in distinct processes. Critically, predictions required more switches 
between perspectives than did decisions, and as a consequence participants produced fewer 
optimal responses and required longer response times. This study shows that the bottleneck 
of mental state reasoning is perspective taking: Reasoning about self is not as difficult as 
reasoning about others.
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Appendix A: Methods

Ethical statement

The study was approved by the ethical committee of the Psychology department of the 
University of Groningen.

Participants

In this study, 51 first-year psychology students (34 female) participated in exchange for course 
credit. Their mean age was 21, ranging from 18 to 34 years. None of the participants were 
excluded from the data analyses. All participants had normal or corrected-to-normal visual 
acuity. Written informed consent was obtained from all participants.

Stimuli

Each game had a unique distribution of payoffs (i.e., diamonds). Of all possible payoff 
distributions we excluded those that did not require inference of mental states. There were 
three exclusion criteria in total. First, a payoff distribution was excluded if the player deciding 
at the topmost trapdoors had her two highest payoffs on one side and her two lowest payoffs 
on the other side. In this case, the player would not have to consider the other player’s decision. 
Second, a payoff distribution was excluded if the maximum payoff of the player deciding at 
the topmost trapdoors was behind her own two sequential trapdoors. In case of such a payoff 
distribution, she does not need to reason about the other player’s goals and intentions. Third, 
a payoff distribution was excluded if both players had the same number of diamonds in each 
bin. Such a payoff distribution does not require inference of mental states, as there would not 
be any conflict between the two players’ goals, beliefs, and intentions.

From the remaining 192 payoff distributions, 56 were randomly selected to be included 
as the set of Decision games. Another 56 items, also randomly selected from the 192 payoff 
distributions, comprised the set of Prediction games.

Procedure

The participants were seated in front of a 24” monitor on which the games were played. 
Before the task started, instructions were given on paper. The instructions explained: the 
goals of the participant and computer-simulated player; who decided where; and what 
response participants should give in case of the “Decide” and “Predict” prompts. After 
reading the instructions, participants could ask for clarification if they had any questions. The 
experimenter answered these questions, but was careful not to give any information on the 
strategy of the computer-simulated player.

The decision and predictions games were presented in random order, and the participants 
played these games from start to end, until the marble dropped into one of the bins. The games 
were fully animated, and at the end of each game there was feedback, which indicated the 
participant’s score in that particular game. For example, “+3” if the marble dropped into a bin 
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that contained three diamonds in the participant’s target color. The total score was depicted 
in the top left corner of the screen. During the first twelve games, participants were provided 
with additional feedback after each game, which indicated whether the obtained score was the 
highest possible score they could have obtained in that particular game.
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Appendix B: Results

The individual responses (decisions and predictions) were analyzed by means of logistic 
linear mixed-effect models, as the data contained at least two sources of random variation: 
The participants and payoff structures were both sampled from larger populations. We 
constructed a full factorial model that comprised fixed effects of ToM order (level 1 / level 
2), switching between ToM-orders (switch / no-switch), and the covariate trial. Trial was log-
transformed to account for the non-linear increase in the proportion of correct decisions and 
predictions (see Figure B.1). The values of the Akaike information criterion (AIC) and the 
Bayesian information criterion (BIC) of the full factorial model were compared with those 
of simplified models from which interaction and main effects were removed. The AIC and 
BIC values indicate whether a better fit of a more complex model is justifiable given its extra 
parameters. 

Accuracy

The model with the most favorable (i.e., smallest) AIC and BIC values contained main effects 
of order and log-trial, and an interaction between the two. The absence of main effects and 
interaction effects on accuracy of switching between Decision and Prediction games, suggests 
that reorientation costs, if any, were negligible and did not differ between switching to 
Decision and switching to Prediction games. 
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Figure B.1. Mean accuracy of decisions (orange) and predictions (blue), averaged across 
participants. The solid lines represent the fits of the linear mixed-effects models.

Figure B.1 shows that the accuracy of predictions is lower than the accuracy of decisions. 
This difference is significant, χ2(1) = 44.77, p < .001. At first, the probability of making correct 
decisions and predictions does not significantly differ, βprediction-decision = -.09 (SE = .25), z = 
-.37, ns. However, the difference becomes larger, as can be seen in Figure B.1. At the end of 
the experiment, the probability of making a correct prediction is significantly lower than the 
probability of making a correct decision, βprediction-decision = -1.06 (SE = .15), z = -7.10, p < 0.001.

Figure B.1 also shows that the accuracy of decisions and predictions increase with each 
game (i.e., trial) played, which is a significant main effect, χ2(1) = 289.65, p < 0.001. This trend 
shows that the participants became better as they played more games. However, the trend was 
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smaller in prediction games than in decision games,  βlog-trial = 0.58 (SE = 0.05), z = 10.78, and 
p < 0.001, and βlog-trial = 0.82 (SE = 0.06), z = 13.75, and p < 0.001, respectively. This interaction 
is significant, χ2(1) = 9.11, p < 0.005. Thus, performance was susceptible to improvement, but 
more so in Decision games than in Prediction games.

Response times

Participants’ response (decision / prediction) times were also analyzed by means of linear 
mixed-effects models. The reaction times were first log-transformed to reduce skew in the 
distribution of response times. Performing the procedure of model comparison described 
above, we found a best fitting model that contained main effects, only, of ToM order, switching, 
and trial. 
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Figure B.2: The response times were averaged across participants; plotted separately for 
Decision games (orange) and Prediction games (blue) on a logarithmic scale.

The participants did not only make more mistakes in Predictions games than in Decision 
games (Figure B.1), they also required more time to predict the other player’s decision than to 
make the same decision themselves (Figure B.2). This main effect is significant, χ2(1) = 4.97, 
p < .05. 

Figure B.2 shows that the log-transformed response times (log-RTs) decreased linearly 
during the experiment, in both the Decision and Prediction games. This effect of trial on the 
log-RTs is significant, χ2(1) = 354.01, p < .001. The lack of an interaction between type of game 
(Decision / Prediction) and trial implies that the ratio of the actual decision and prediction 
times did not change over trial. 

Interestingly, whereas switching between Decision and Prediction games did not have an 
effect on the accuracy of the participants’ responses, switching did cause a significant time cost, 
χ2(1) = 49.13, p < .001. This finding implies that switching back and forth between one’s own 
and the other player's perspective did have an associated time cost, in addition to the time cost 
associated with playing Prediction games instead of Decision games. Importantly, there were 
no interaction effects that included this switching factor, which means that the time cost of 
switching between Decision and Prediction games, and vice versa, was symmetrical. Therefore, 
switching between Decision and Prediction games could not have been a confounding factor 
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in explaining, for example, shorter RTs in Decision games in comparison to Prediction games. 
That difference is solely to be attributed to the required order of theory of mind.
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Chapter 4 
 
Reasoning about diamonds, physics, and mental 
states: The cognitive costs of theory of mind

Abstract

Theory of mind (ToM) is required when reasoning about mental states such as knowledge, 
beliefs, desires, and intentions. Many complex reasoning tasks require domain-general 
cognitive resources such as planning, resistance to interference, and working memory. In this 
paper we present a study of the additional cognitive costs of reasoning about mental states. 
We presented participants with sequential games in which they have to reason about another 
player. In the so-called player condition, the other player is reasoning about the participant, 
whereas in the so-called balance condition, the other player is reasoning about a balance scale. 
Both types of games require the same comparisons, but only differ in the required depth 
of ToM reasoning. Games in the player condition require one additional switch between 
perspectives. The results show that participants make different types of mistakes in the player 
condition as compared to the balance condition. This finding implies a different reasoning 
process when reasoning about mental states. The results also show faster decreasing reaction 
times in the balance condition than in the player condition. Based on these findings, we argue 
that reasoning about mental states requires unique cognitive resources.

Part of this chapter was previously published in the proceedings of the 35th Annual Conference 
of the Cognitive Science Society (2013).
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Introduction

In many social interactions we reason about one another. If, for example, our decisions or 
outcomes depend on someone else’s actions, we try to predict what the other will do. Predicting 
the other’s actions requires an understanding of how behaviors are caused by mental states 
such as beliefs, desires, goals, et cetera. Such an understanding is often referred to as theory 
of mind (Baron-Cohen, Leslie, & Frith, 1985; Premack & Woodruff, 1978; Wellman, Cross, & 
Watson, 2001; Wimmer & Perner, 1983).

A theory of mind, or ToM, is starting to develop around the age of three to four years 
(Wellman et al., 2001; Wimmer & Perner, 1983). However, younger infants already are 
susceptible to others’ mental states (Kovács, Téglás, & Endress, 2010; O'Neill, 1996; Onishi & 
Baillargeon, 2005). One possible explanation is that they are able to read others’ behavior, but 
cannot yet explicitly reason about the underlying mental states. Only after many interactions, 
reading many distinct behaviors, do children start to develop a theory of how behaviors 
generally correspond with beliefs, desires, intentions, et cetera.

So far, we have introduced ToM as being a theory (Gopnik & Wellman, 1992; Wellman 
et al., 2001). However, we do not want to exclude another definition of ToM that considers 
it to be an ability or skill to reason about mental states of oneself and others (Apperly, 2011; 
Leslie, Friedman, & German, 2004; Van Rij, Van Rijn, & Hendriks, 2010; Wimmer & Perner, 
1983). In fact, a theory alone would not suffice when reasoning about others’ mental states. 
Such reasoning is an entire process of generating many possible mental state interpretations 
(Baker, Saxe, & Tenenbaum, 2009), and ToM reasoning might be qualitatively different from 
other kinds of reasoning.

Some studies have shown similar but uncorrelated developmental trends in ToM tasks and 
non-mental tasks that require similar representations (Arslan, Hohenberger, & Verbrugge, 
2012; De Villiers, 2007; De Villiers & Pyers, 2002; Flobbe, Verbrugge, Hendriks, & Krämer, 
2008; Hale & Tager-Flusberg, 2003). For example, a relative clause in the sentence “The goat 
that pushes the cat” requires a similar representation as the complement clause in “Alice knows 
that Bob is writing”, but only the complement clause requires a mental state representation. 
As children become older, they get better at understanding both types of sentences. However, 
their performance does not correlate when the factor age is controlled for. These findings 
show that ToM tasks might consume unique cognitive resources. It is important to note, 
however, that these tasks might have differed with respect to other factors, besides the aspect 
of mental representations.

Some studies show similar performance in ToM tasks, on the one hand, and equivalent 
but non-mental control tasks, on the other. In the false-belief or Sally-Anne task, for example, 
children have to attribute a false belief about an object’s current location to Sally (Baron-
Cohen et al., 1985; Wellman et al., 2001; Wimmer & Perner, 1983). Sally stores an object 
at location A, but the object is moved from location A to location B while Sally is away. 
Therefore, Sally still thinks that the object is at location A. To pass this task, children should 
acknowledge that Sally falsely believes that the object is still at location A. The false-sign task 
is a similar but non-mental counterpart of the false-belief task. An object is first stored at 
location A, indicated by an arrow. Next, the object is moved from location A to location B, but 
the arrow still points at location A. The false sign in this task is the arrow pointing at location 
A, which is similar to Sally’s false belief. Children’s accuracy in both tasks is similar, and their 
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Figure 4.1. Examples of two-player Marble Drop 
games. A white marble is about to drop, and its 
path can be manipulated by turning the orange 
and blue trapdoors. In these example games, 
participants have to obtain as many orange 
diamonds as possible and they control the 
orange trapdoors. The other player has to obtain 
as many blue diamonds as possible and controls 
the blue trapdoor. The arrows in a and b indicate 
what comparisons should be made to make an 
optimal decision at the topmost trapdoor. In 
game a, the optimal decision for a participant 
is to let the white marble drop into the topmost 
bin, thereby obtaining 3 orange marbles. The 
4 orange diamonds in the bottom-left bin are 
not obtainable for the participant, as the other 
(blue) player’s optimal decision is to let the white 
marble drop into the middle bin: The other 
player knows that the optimal (orange) decision 
at the bottom trapdoors is to go left, yielding 
a suboptimal outcome of 1 blue diamond for 
Player 2. Games a and c are second-order games, 
because participants (as Player 1) have to reason 
about the other player (i.e., Player 2) who in turn 
has to reason about Player 1. The games in b 
and d are first-order counterparts of the games 
in a and c, respectively. They require the same 
comparisons, as the outcome of the balance scale 

is congruent with Player 1’s last correct / rational decision: Both depend only on Player 1’s diamonds in the bottom 
two bins. However, the games with the balance require one fewer switch between Player 1 and Player 2 perspectives.

performance correlates, even after correcting for age (Leekam, Perner, Healey, & Sewell, 2006; 
Perner & Leekam, 2008; Sabbagh, Xu, Carlson, Moses, & Kang, 2006). This finding implies 
that mental state reasoning might not qualitatively differ from other kinds of reasoning.

Similar accuracy of responses in ToM tasks and their non-mental counterparts, however, 
does not necessarily imply a similar reasoning process. Moreover, differences might manifest 
themselves elsewhere, for example, in the reaction times. If, for example, both tasks require 
overlapping cognitive functions but ToM tasks require additional cognitive processing, the 
response patterns might not differ as much as the associated response times. Moreover, 
differences in accuracy might not manifest themselves until the tasks become more complex 
and exhaust cognitive resources.

Given these mixed findings, the question remains whether reasoning about mental 
states requires additional cognitive resources. Complex reasoning tasks consume cognitive 
resources, because oftentimes they require integration of information in the overall reasoning 
process. Integration of information and reasoning both require executive functions such as 
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planning, set shifting, resistance to interference, and working memory. It is not yet obvious 
why these executive functions alone would not suffice to reason about mental states.

In this study we investigate whether reasoning about mental states consumes unique 
cognitive resources. Participants are presented so-called Marble Drop games (Figure 4.1) 
in which they have to reason about another player. Marble Drop games have a recursive 
structure because the best possible, or optimal, decision at the first trapdoor depends on the 
other player’s decision at the second trapdoor, which in turn depends on the outcome at the 
third trapdoor (Meijering, Van Rijn, Taatgen, & Verbrugge, 2011). The crucial factor in this 
experiment is whether the outcome at the third trapdoor is determined by Player 1’s decision 
(player condition) or by the physics of a balance scale (balance condition). Both conditions 
require the same comparisons, but games in the player condition require one additional 
switch between player perspectives: Player 1 has to reason about what Player 2 thinks that 
Player 1 will do at the final trapdoor. If reasoning about mental states requires additional 
cognitive resources, games in the player condition would be more difficult than games in the 
balance condition.

Method

Participants are always assigned to the role of Player 1, and in both conditions they need to 
take the perspective of Player 2 to predict the outcome at the second trapdoor. This perspective 
taking requires ToM. As explained previously, the decision at the second trapdoor depends 
on the outcome at the third trapdoor. If the participants (i.e., Player 1) control that trapdoor, 
they need to switch perspective again. They need to re-take their own perspective from 
within Player 2’s perspective. This requires second-order ToM. In the balance scale condition, 
participants do not have to switch perspective again, and thus need first-order ToM at most. 
They still need to make the same comparisons, as the outcome of the balance scale depends 
on Player 1’s payoffs and this outcome is congruent with Player 1’s goal to maximize his or 
her payoffs.

If ToM requires unique cognitive resources, we expect that participants respond faster in 
the balance condition than in the player condition, because the balance condition requires 
one switch less between Player 1 and Player 2 perspectives than the player condition. We also 
expect better performance in the balance condition, because Marble Drop games in which 
Player 1 controls the third trapdoor might appear to be less deterministic. The hypothesis, 
here, is that it is easier to attribute knowledge of physics to Player 2 than to attribute to Player 
2 epistemic reasoning about Player 1, as epistemic reasoning involves testing of multiple 
possible Player 2 perspectives.

Participants

Forty-two first-year Psychology students (30 female) participated in exchange for course 
credit. The average age was 21 years, ranging from 18 to 25. Each participant reported normal 
or corrected-to-normal visual acuity.
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Stimuli

Of all possible payoff structures, only those that are diagnostic of second-order ToM reasoning 
were included in the experiment. A game is diagnostic of second-order ToM reasoning if it 
requires a participant to reason about each decision point to arrive at the optimal decision. 
An example of a non-diagnostic payoff structure is one in which Player 1’s first payoff, in the 
topmost bin, is the maximum payoff in that game. In that case, Player 1 would not need to 
reason about the second and third decision points. The payoff structures are listed in a table, 
which can be found at http://www.ai.rug.nl/~meijering/marble_drop.html.

Design

The experimental design consists of two between-subjects conditions: balance condition 
versus player condition. In the player condition, participants are presented with the original 
second-order ToM games (Meijering, Van Rijn, Taatgen, & Verbrugge, 2012). In the balance 
condition, participants play the games with the same payoff structures, but the third decision 
point is replaced by a balance scale. Importantly, the games in both conditions are equivalent, 
as they require the same comparisons between payoffs. In each game, the outcome of the 
balance is the same as the last correct / rational decision of Player 1, because both only depend 
on the number of Player 1 diamonds in the bottom two bins (see Figure 4.1).

Procedure

After giving informed consent, participants were seated in front of a 24-inch iMac. They were 
randomly assigned to the balance scale condition or the player condition. The participants 
were instructed that their goal was to obtain as many diamonds as possible of their target 
color, either blue or orange, which was counterbalanced between participants. They were also 
instructed that Player 2’s (i.e., the computer’s) goal was to obtain as many marbles as possible 
of the other color.

The experimental procedure is the same in both the player and the balance conditions. 
Participants are presented 62 unique games. At the start of each game, participants have to 
decide whether to stop the game, by letting the white marble drop into the top bin, or to 
continue the game, by letting the white marble drop onto Player 2’s trapdoor. The game stops 
if Player 2 decides to let the white marble drop into the middle bin. If Player 2 decides to let the 
white marble drop onto the third trapdoor, participants in the player condition have to decide 
whether to stop the game in the bottom-left or bottom-right bin. In the balance condition, 
the physics of the balance scale determine whether the marble drops into the bottom-left bin 
or the bottom-right bin. Importantly, the balance scale is set in motion as soon as the white 
marble drops onto it. Otherwise, Player 2 would not have to reason about the balance scale. 
Each game is fully animated. See Figure 4.1 for some example games.

After each game, participants receive feedback that mentions Player 1’s outcome. If, for 
example, the marble drops into a bin that contains two diamonds for Player 1, the feedback 
mentions: “You get 2”. 

To familiarize participants with the rules of Marble Drop games, participants are presented 
additional feedback during the first 12 games. Feedback explicitly mentions whether the 
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outcome is the highest attainable Player 1 payoff. In case a participant obtains 3 diamonds and 
could not have obtained more, feedback is: “Correct. You get 3. The highest possible payoff!”. In 
case a participant obtains 3 diamonds, but could have obtained 4, feedback is: “Incorrect. You 
get 3. You could have obtained 4”.

Results and discussion

The data consist of 62 unique Marble Drop games (i.e., payoff structures) for each participant. 
In the statistical analyses, the games are blocked to accommodate non-linear and differential 
learning rates: The first 12 ‘training’ games comprise the first block, and the remaining 50 
games are split into 5 subsequent blocks of 10 games each. The graphs show means and 
standard errors, which are represented by error bars.

The data are analyzed by means of linear mixed-effects models (Baayen, 2008; Baayen, 
Davidson, & Bates, 2008; Gelman & Hill, 2007) to accommodate random sources of variation 
due to sampling of participants and items (i.e., payoff structures). Specifically, each model 
allows for by-participant and by-item adjustments of the intercept. For each analysis that we 
report below, we first constructed a full factorial model with all main and interaction effects. 
Based on likelihood ratio comparisons, we removed main and interaction effects for as long 
as the corresponding parameters were not justified. If a comparison preferred a simplified 
model, we report the log-likelihood statistics. The correctness of responses is analyzed by 
means of logistic linear mixed-effects models, as correctness of responses is a binary variable 
(incorrect vs. correct).
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Figure 4.2: Mean proportion of correct responses per block; depicted separately for 
participants in the balance condition (light gray) and the player condition (dark gray). 

Mean proportion correct

The proportion of correct responses in each block is averaged across participants and depicted 
in Figure 4.2. The figure does not show great differences between performance in the balance 
scale and player conditions. 
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A full-factorial model with main effects and an interaction effect of Condition and Block 
did not fit the data better than an additive model, χ2(5) = 6.08, ns. The parameters of the 
additive model are discussed below.

There is a significant effect of Block, β = 1.37, z = 10.89, p < .001. As can be seen in Figure 
4.2, performance increases over the course of playing many Marble Drop games.

There is no effect of Condition, as can be seen in Figure 4.2. In contrast to our hypothesis, 
the probability of making a correct decision does not differ between the balance scale and 
player conditions. An analysis of the types of errors (next section: Types of Errors), however, 
shows differential errors between the balance scale and player conditions.
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Figure 4.3: Mean proportion of correct responses across participants, depicted separately 
for the balance scale and player conditions, and Player 2’s decision.

Types of errors

The errors that participants made were categorized according to game type, as an overall 
analysis might not be sensitive enough to differentiate between the balance scale and player 
conditions. Two types of games were distinguished on the basis of Player 2’s (programmed) 
decision, which is either stop the game or continue.

There is no main effect of Player 2 decision, β = -.08, z = -.575, ns, which means that the 
difficulty of a game does not depend on Player 2’s decision. This finding implies that there is 
no reason to believe that there are particular subsets of hard(er) payoff structures among the 
selected payoff structures.

There is a significant interaction effect between the factors Condition and Player 2 response 
(see Figure 4.3), β = .65, z = 3.349, and p < 0.001. In the balance scale condition, the probability 
of making a correct decision does not differ between games in which Player 2’s decision is to 
stop, on the one hand, and games in which Player 2’s decision is to continue, on the other 
hand. In the player condition, in contrast, there is a difference. One possible explanation is 
that participants in the player condition expect Player 2 to continue in most games, and this 
expectation pays off in games in which Player 2 actually decides to continue. In each game, 
Player 2 has a greater payoff in one of the last two end states than in the earlier end state, and 
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participants might assign too great a probability to Player 2 going for that payoff. Participants 
in the balance condition, in contrast, might estimate those probabilities more accurately (i.e., 
lower), because games with a balance scale can be considered more deterministic.

Reaction times

There are differences in the types of errors between participants in the balance scale and player 
conditions, but what about the reaction time data? RTs are analyzed to find out whether a 
switch between perspectives comes with a time-cost. The RTs are log-transformed as reaction 
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Figure 4.4: Average log-RT across participants plotted against block, separately for the 
balance scale and player conditions. 

times are skewed to the right. Figure 4.4 shows the average log-RT across participants.
Figure 4.4 shows differential learning rates between participants in the balance scale 

and player conditions, especially in the first half of the experiment, in blocks 1 to 3. In the 
second half, blocks 4 to 6, the learning rates do not seem to differ that much. To specifically 
accommodate for differential learning rates, the factor Block was re-parameterized as a new 
factor Half, with levels 1 and 2, and a new factor Block with levels 1, 2, and 3 within each level 
of Half. The results of the full factorial LME with main and interaction effects of Condition, 
Half, and Block are discussed below.

The main effects of Half and Block (with linear contrast) are significant, β = -.22, t = -7.82, 
p < .001, and β = -.18, t = -5.37, p < .001, respectively. From the first to the second half of the 
experiment, and within each half, the RTs decrease linearly. The interaction between Half and 
Block is also significant, β = .15, t = 3.19, p = .0015. The decrease in RTs is stronger in the first 
half of the experiment than in the second half.

The interaction between Condition and Block is significant, β = .17, t = -3.43, p < .001. 
The decrease in RTs in the first half of the experiment is less strong in player condition than 
in balance scale condition. This finding is partly congruent with the hypothesis that RTs are 
shortest in the balance scale condition because it requires fewer switches between perspectives 
than the player condition. There is, however, no main effect of Condition, β = .14, t = 1.2, ns. 
Thus, on average, the RTs do not differ between the balance scale condition and the player 
condition. However, participants in the balance scale condition do become faster towards the 
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end of the first half of the experiment, whereas participants in the player condition do not 
become faster. A possible explanation is that participants in the balance scale condition are 
quicker over the course of playing multiple games to attribute an understanding of gravity to 
Player 2. In contrast, participants in the player condition need to play more games and test 
multiple Player 2 perspectives. 

The interaction between Condition, Half, and Block is also significant, β = -.14, t = -2.83, 
p < .005. As can be seen in Figure 4.4, the differential learning rates in the first half of the 
experiment disappear in the second half of the experiment, where the RT trends do not differ 
that much between the balance scale condition and the player condition.

In sum, there is an interaction effect of Condition and Block on the RTs, and this effect is 
mainly present in the first half of the experiment. There, the RTs decrease more in the balance 
scale condition than in the player condition. This interaction effect, between Condition and 
Block, seems to disappear in the second half of the experiment. A possible explanation for the 
latter finding is that, initially, participants in the balance scale condition settle more quickly 
on the correct Player 2 perspective than participants in the player condition, who test multiple 
Player 2 perspectives across multiple games.

General conclusions

In this study we investigated whether ToM requires additional cognitive resources. We 
presented two types of games that required the same comparisons but differed with respect to 
the required depth of ToM reasoning: Games in the player condition required second-order 
ToM, as participants had to reason about a Player 2 that, in turn, reasoned about them; Games 
in the balance scale condition required first-order ToM, as participants had to reason about 
a Player 2 that reasoned about a balance scale. Our results show different errors between 
these conditions, which implies that the reasoning was not the same in the balance scale and 
player conditions. Moreover, the reaction time trends differed. The learning rate was faster 
for participants in the balance scale condition than for participants in the player condition. 
A faster learning rate in the balance condition is congruent with our hypothesis that it is 
easier to play against a Player 2 that reasons about gravity than playing against a Player 2 that 
reasons about mental states.

We assumed that games with a balance scale are easier to play because they appear to 
be more deterministic than games in which Player 1 has the last decision. This assumption 
is congruent with the RT data: Longer RTs in the player condition could be the cause of 
participants’ testing of multiple possible Player 2 perspectives. Games in the balance scale 
condition, in contrast, require testing of fewer possible Player 2 perspectives, yielding shorter 
decision times.

Besides a faster learning rate in the balance condition, we expected a greater proportion 
of correct decisions. However, the probability of making a correct decision does not differ 
between the balance scale (i.e., first-order ToM) condition and the player (i.e., second-
order ToM) condition. One possible explanation is that knowledge about gravity is not 
automatically attributed to Player 2. We expected that participants in the balance condition 
would automatically ‘see’ how Player 2’s decision depends on the outcome of the balance, 
as young children have already mastered many balance scale configurations (Jansen & Van 
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der Maas, 2002; Van Rijn, Van Someren, & Van der Maas, 2003). However, attributing an 
understanding of gravity to Player 2 might be less of an automatic process than reasoning 
about gravity oneself.

Based on our findings, we conclude that participants do need theory of mind in Marble 
Drop games. Sequential games such as Marble Drop can be critiqued for not requiring ToM: 
If Player 2’s strategy is known, the optimal (Player 1) decision can be determined without 
reasoning about Player 2’s reasoning about Player 1’s last possible decision. Applying backward 
induction, an algorithm based on sequential payoff comparisons, would yield the optimal 
decision. However, Meijering et al.’s (2012) eye tracking study (see also Chapter 5 in this 
dissertation) shows that participants use more complicated and diverse reasoning strategies, 
not only backward induction. Moreover, backward induction would not be able to account for 
different types of mistakes and differential reaction times in the two conditions, as backward 
induction always works the same, irrespective of condition. Therefore, our findings provide 
support for the idea that sequential games are not just a decision-making problem but also 
evoke reasoning about mental states and thus require ToM.

In fact, it seems that sequential games are a particularly good paradigm to test reasoning 
about mental states, as they require active application of ToM. If Player 2’s strategy is not yet 
known, participants need to actively find the correct Player 2 perspective. In any given game, 
multiple Player 2 perspectives might apply, but only that of a rational Player 2 is consistent 
with Player 2’s actual decisions across all games. Active application of ToM is required to test 
multiple perspectives and find that of a rational Player 2. 

To conclude, our findings are congruent with findings from fMRI studies showing that 
mental state reasoning employs brain regions that differ from the regions involved in cognitive 
control (e.g., Apperly, 2011; Ramsey, Hansen, Apperly, & Samson, 2013; Saxe, Schulz, & Jiang, 
2006). Our findings suggest that perspective taking requires additional cognitive resources, 
as opposed to just greater cognitive control, as one additional switch between perspectives 
induces not only longer reaction times but also qualitatively different decisions. 
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Chapter 5 
 
What eye movements can tell about theory of 
mind in a strategic game

Abstract

This study investigates strategies in reasoning about mental states of others, a process that 
requires theory of mind. It is a first step in studying the cognitive basis of such reasoning, as 
strategies affect tradeoffs between cognitive resources. Participants were presented with a two-
player game that required reasoning about the mental states of the opponent. Game theory 
literature discerns two candidate strategies that participants could use in this game: either 
forward reasoning or backward reasoning. Forward reasoning proceeds from the first decision 
point to the last, whereas backward reasoning proceeds in the opposite direction. Backward 
reasoning is the only optimal strategy, because the optimal outcome is known at each decision 
point. Nevertheless, we argue that participants prefer forward reasoning because it is similar 
to causal reasoning. Causal reasoning, in turn, is prevalent in human reasoning (Gopnik et 
al., 2004). 

Eye movements were measured to discern between forward and backward progressions of 
fixations. The observed fixation sequences corresponded best with forward reasoning. Early 
in games, the probability of observing a forward progression of fixations is higher than the 
probability of observing a backward progression. Later in games, the probabilities of forward 
and backward progressions are similar, which seems to imply that participants were either 
applying backward reasoning or jumping back to previous decision points while applying 
forward reasoning. Thus, the game-theoretical favorite strategy, backward reasoning, does 
seem to exist in human reasoning. However, participants preferred the more familiar, 
practiced, and prevalent strategy: forward reasoning.

This chapter was previously published PLoS ONE (2012).
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Introduction

Having a theory of mind (ToM) allows us to reason about other people’s mental states, 
their knowledge, beliefs, desires, and intentions. This ability is helpful in social interactions, 
especially when our outcomes depend on the actions of others, and vice versa. Many studies 
have focused on the age at which ToM develops (Baillargeon, Scott, & He, 2010; Flobbe, 
Verbrugge, Hendriks, & Krämer, 2008; Onishi & Baillargeon, 2005; Perner & Wimmer, 1985; 
Wellman, Cross, & Watson, 2001; Wimmer & Perner, 1983), the proficiency of humans and 
nonhumans in ToM tasks (Call & Tomasello, 2008; Goodie, Doshi, & Young, 2012; Hedden 
& Zhang, 2002; McKelvey & Palfrey, 1992; Meijering, Van Maanen, Van Rijn, & Verbrugge, 
2010; Meijering, Van Rijn, Taatgen, & Verbrugge, 2011; Premack & Woodruff, 1978; Zhang, 
Hedden, & Chia, 2012), and the brain regions associated with ToM (Gallagher & Frith, 2003; 
Saxe, 2006; Saxe, Schulz, & Jiang, 2006). In contrast, few studies have focused on the cognitive 
basis of ToM (Apperly, 2011; Apperly & Butterfill, 2009). Consequently, little is known about 
how inferences about mental states are achieved.

As findings from cognitive neuroscience have shown that participants in ToM tasks employ 
many brain regions rather than one single “ToM module” (Apperly, 2011; Gallagher & Frith, 
2003; Saxe, 2006; Saxe et al., 2006), ToM reasoning probably consists of multiple serial and 
concurrent cognitive processes. Cost-benefit tradeoffs between these various resources will 
most likely have cascading effects on cognitive load (Borst, Taatgen, & Van Rijn, 2010) and 
thus ToM reasoning. Both task setting and strategies, in turn, have been shown to affect cost-
benefit tradeoffs between cognitive resources (Fu & Gray, 2004; Gray, Sims, Fu, & Schoelles, 
2006; Todd & Gigerenzer, 2000). Therefore, the study of strategies and task setting might 
be an appropriate first step in the study of the cognitive basis of ToM reasoning (Ghosh & 
Meijering, 2011; Ghosh, Meijering, & Verbrugge, 2010). 

In this study, we investigate the ongoing process of ToM reasoning in a two-player game, 
referred to as Marble Drop (Meijering et al., 2010; 2011), see Figure 5.1. In this game, a white 
marble is about to drop, and each player’s goal is that the white marble drops into the bin that 
contains the darkest possible marble of his or her allocated color. This is commonly known 

(a) (b) (c)

A B A B C A B C D

Figure 5.1: Examples of zero-order (a), first-order (b), and second-order (c) Marble Drop 
games. Each bin contains a pair of marbles, labeled A to D. For each player, the goal is that 
the white marble drops into the bin that contains the darkest possible marble of his or 
her allocated color. In this example, Player 1’s marbles are blue, and Player 2’s marbles are 
orange. Player 1 controls the blue trapdoors and Player 2 controls the orange trapdoors. The 
dashed diagonal lines represent the trapdoors that the players should decide to remove to 
obtain their maximum payoffs in these particular games.
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among the players. Both players can remove trapdoors to control the path of the white marble. 
Marble Drop requires ToM because each player’s outcomes depend on the decisions of the 
other player.

The example games in Figure 5.1 are of varying difficulty. With each additional decision 
point (i.e., set of trapdoors), the required reasoning becomes more complex. The game in 
Figure 5.1c is the most difficult, and requires second-order ToM. Below, we provide a possible 
reasoning scenario to explain how second-order ToM comes into play in this particular game.

By looking at payoff-pairs A to D in the game in Figure 5.1c, Player 1 will find out that B 
contains the darkest marble of his allocated color, blue. Player 1 has to ask himself whether 
that marble is attainable. In other words, Player 1 has to reason about whether Player 2 would 
remove the left orange trapdoor. Therefore, Player 1 has to look at the orange marbles in B to 
D to find out that D contains Player 2’s darkest orange marble. ToM reasoning continues with 
Player 1 asking himself whether Player 2 thinks her orange marble in D is attainable. In other 
words, Player 1 has to reason about whether Player 2 thinks that he, Player 1, would remove 
the right blue trapdoor of the rightmost set of trapdoors. Player 1 knows that he would not 
remove that trapdoor, but that he would remove the left one instead. He also knows that 
Player 2 is aware of this, as both players are aware of each other’s goals. Therefore, Player 1 
knows that Player 2 knows that her darkest orange marble in D is unattainable. Therefore, 
Player 1 has to go back to the second decision point (i.e., the orange trapdoors). There, 
Player 2 would compare the orange marbles in B and C and decide to remove the left orange 
trapdoor, because the orange marble in B is the darkest orange marble that she can still attain. 
To conclude, Player 1 knows that his darkest blue marble in B is attainable, and will thus 
remove the right blue trapdoor of the leftmost set of trapdoors.

According to game theory literature there is just one strategy that undoubtedly yields the 
optimal outcome: reasoning by backward induction. We will refer to this strategy simply as 
backward reasoning. Backward reasoning proceeds from the last decision to be made back 
to the original problem or situation (Osborne & Rubinstein, 1994). The last decision in the 
game in Figure 5.1c is Player 1’s decision between the blue marbles in payoff-pairs C and D. 
Player 1 would decide to remove the left trapdoor because C contains the darker blue marble. 
Backward reasoning would then proceed with the second-to-last decision, which is Player 2’s 
decision between the orange marbles in payoff-pairs B and C. Player 2 would decide to remove 
the left orange trapdoor, because B contains the darker orange marble. Backward reasoning 
stops at the third-to-last decision, which is Player 1’s decision between the blue marbles in 
payoff-pairs A and B. Player 1 would remove the right blue trapdoor, because B contains the 
darker blue marble. This scenario shows that backward reasoning is very efficient, because the 
optimal outcome is known at each decision point. Accordingly, few reasoning steps need to 
be retained, and working memory load would be small.

Game theory literature discerns another possible strategy, forward reasoning, but this 
strategy is not guaranteed to yield the optimal outcome (Ghosh & Meijering, 2011). Opposite 
to backward reasoning, the forward reasoning strategy starts at the first decision point in 
a game and blindly proceeds to the next for as long as higher outcomes are expected to be 
available at future decision points. A drawback of this strategy is that a player might not 
recognize the highest attainable outcome and continues the game to future decision points 
with lower outcomes. However, occasionally forward reasoning yields a quick solution, for 
example, if the maximum outcome is available at the first decision point.
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Even though backward reasoning is the optimal strategy in games such as Marble Drop, 
it does not seem to be ubiquitous in human reasoning. In contrast, a forward progression 
seems to be more prevalent, for example in causal reasoning, where causes or decisions 
lead to possible effects. A well-known example of the persistency of causal reasoning is the 
fundamental attribution error, where causal explanations of observed behaviors are often 
dispositional despite more appropriate situational explanations (Kelley & Michela, 1980; 
Weber, Camerer, Rottenstreich, & Knez, 2001). 

Given the prevalence of a forward direction in human reasoning, we expect that forward 
reasoning might also be a viable candidate strategy in Marble Drop games, even though 
backward reasoning is the game-theoretical favorite. However, forward reasoning would not 
always suffice to achieve the optimal outcome in Marble Drop. As explained above, a player 
might discover, while reasoning forwardly, that he or she unknowingly skipped the highest 
attainable outcome at a previous decision point. Thus, the player would need to jump back to 
inspect whether that outcome is indeed attainable. The procedure of jumping back to previous 
decision points is called backtracking (Brassard & Bratley, 1996). Backtracking superficially 
resembles backward reasoning, but it differs because jumping back to a previous decision point 
can be followed up with forward reasoning again. Note that our explanation of the Marble 
Drop game in Figure 5.1c followed the procedure of forward reasoning plus backtracking. 
Forward reasoning plus backtracking is less efficient than backward reasoning, because (at 
most stages in a game) multiple possible outcomes need to be retained to compare against 
next possible outcomes. Consequently, this strategy would cause high working memory load. 

Besides the question which strategy is preferred (i.e., backward reasoning or forward 
reasoning plus backtracking), we investigate whether strategy preference can be influenced 
by task factors. The latter question is inspired by the work of Hedden and Zhang (2002). An 
important but also criticized aspect of that study was that each participant (assigned to the 
role of Player 1) was asked to predict the decision of Player 2 first, before making a decision 
(Colman, 2003). As this procedure prompts perspective taking, ToM reasoning might not 
have been completely spontaneous (Colman, 2003; Hedden & Zhang, 2002; Zhang & Hedden, 
2003). In fact, we have shown that prompting participants for predictions indeed has a positive 
effect on performance (Meijering et al., 2010; 2011; see also Chapter 2 in this dissertation). In 
the current study, we investigate whether prompting may also have an effect on participants’ 
preferences for any of the strategies.

Because Marble Drop has a predominantly visual interface and both strategies clearly 
predict a distinct succession in which the payoffs are to be compared, we employed eye 
tracking to measure the online (i.e., ongoing) process of ToM reasoning. Eye tracking has 
been used extensively in visual search tasks and reading tasks (Liversedge & Findlay, 2000; 
Rayner, 1998), and in complex visual problem solving tasks (Kong, Schunn, & Wallstrom, 
2010; Nyamsuren & Taatgen, 2013). These studies have shown correlations between eye 
movements, on the one hand, and cognitive processes and higher-level strategies, on the other 
hand. For example, Kong et al. (2010) found a strong correlation between participants’ visual 
working memory capacity and their eye movements while solving a nontrivial problem-
solving task, the traveling salesman problem. Eye tracking has also been proven successful 
in exposing strategies in another complex (but non-social) reasoning task (Nyamsuren & 
Taatgen, 2013). Based on the eye movements of participants that played the game of SET, 
Nyamsuren and Taatgen (2013) were able to distinguish between bottom-up visual processes 



Reasoning about self and others52

and top-down planning processes. They were also able to detect in-game strategy shifts in 
participants.

An advantage of eye tracking is that it is an unobtrusive measure; participants were not 
constrained in any other way than in the original task setting. In contrast, other studies on 
online ToM reasoning required task modifications that may have influenced participants’ 
strategies. For example, in Johnson, Camerer, Sen, and Rymon’s computer task (2002), 
participants had to uncover task-relevant information that was hidden behind boxes displayed 
on the computer screen. The participants had to move the mouse cursor over a box to reveal 
the information behind it. Consequently, they might have felt disinclined to repeatedly move 
around the cursor to inspect each box’s content. Tracking the eye movements (with a desk-
mounted eye tracker) does not constrain participants so much. 

In sum, the literature has identified one optimal strategy (backward reasoning), and we 
propose another (forward reasoning plus backtracking). Both strategies are clearly distinct 
from each other. This study aims to identify which strategy explains participants’ performance 
in a ToM task best. It also investigates whether prompting participants for predictions has an 
effect on their strategies. We use eye tracking because it is an appropriate tool for showing 
whether the general direction of the eye movements, and thus reasoning, is either forward or 
backward.

Method

Ethics Statement

The Ethical Committee Psychology (ECP) of the University of Groningen approved this study. 
Written informed consent as approved by the ECP was obtained from each participant before 
conducting the experiment.

Participants

Twenty-three first-year psychology students (14 female) with a mean age of 20.8 years (ranging 
from 18 to 24 years) participated in exchange for course credit. All participants had normal 
or corrected-to-normal visual acuity. None of the participants had difficulties distinguishing 
between the colors (blue and orange) presented in the experiment.

Stimuli

Instead of using numerical payoffs, which are commonly used in strategic games, we chose 
for colored marbles to counter numerical but non-optimal strategies such as, for example, 
minimizing the opponent’s outcomes, or maximizing the difference in Player 1 and Player 2 
outcomes.

Payoffs
The payoffs were marbles of 4 different shades that could be ordered from light to dark. The 
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colors of the marbles were shades of orange and blue, taken from the HSV (i.e., hue, saturation 
and value) space. A sequential color palette was computed by varying saturation, for a given 
hue and value. This resulted in 4 shades (with saturation from .2 to 1) for both of the colors 
orange (hue = .1, value = 1) and blue (hue = .6, value = 1). The participants did not have any 
difficulties distinguishing between the shades of either color1.

Payoff structures
The payoff structure (i.e., configuration of payoffs) and strategy preference determine the 
complexity of the reasoning required of Player 1, the participant. For example, a forward 
reasoning Player 1 immediately knows what to do if payoff-pair A contains his darkest 
marble: stop the game (i.e., remove the left-side trapdoor). In this case, Player 1 does not 
have to reason about Player 2’s reasoning about Player 1. Therefore, we excluded this payoff 
structure, as it cannot inform us about second-order ToM. We only selected payoff structures 
that required Player 1 to reason about the decision at each of the three decision points (i.e., 
sets of trapdoors). 

In line with Hedden and Zhang’s criteria (2002), we considered payoff structures to be 
diagnostic of second-order ToM reasoning if, at the first set of trapdoors, second-order 
reasoning yielded a decision opposite to a decision based on first-order ToM reasoning. The 
payoff structures were balanced for the number of correct decisions to remove the left / right 
trapdoor, for both Player 1 and Player 2. The payoff structures are provided in Appendix A of 
Chapter 2.

Design

The experiment consisted of three blocks: a training block and two test blocks. The training 
block was meant to familiarize participants with the rules of Marble Drop. In the first test 
block we manipulated whether participants were prompted to predict Player 2’s decision. 
The first test block was followed by a second one, in which none of the participants had to 
make predictions anymore. This block was meant to measure the longevity of the effect of 
prompting participants for predictions. 

Procedure

Participants were seated in front of a 20-inch computer monitor, at 70 cm distance. An Eyelink 
1000 eye-tracker was used to record the eye movements of the dominant eye, at a sample-rate 
of 500 Hz. The eye tracker was calibrated to each participant’s dominant eye. Participants were 
always assigned to the role of Player 1. The target color, either blue or orange (marbles and 
trapdoors), was counterbalanced between participants. Participants were instructed that their 
goal was to maximize their payoffs, that is, to attain the darkest possible marble of their target 
color. Participants were told truthfully that they were playing against a computer-simulated 

1	  The experiment was preceded by a block of 20 trials in which participants had to distinguish between the 
colors blue and orange, and between different shades of the colors blue and orange. They performed up to ceiling (M = 
0.99, SE < .01), which implies that the participants did not have any difficulties distinguishing between colors and shades 
of colors.
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Player 22, whose goal was to maximize its payoffs. Participants were also instructed that the 
computer was programmed to look ahead and take into account the participant’s last possible 
decision (i.e., Player 1’s decision at the last set of trapdoors). 

In the training block, participants were presented with 20 games of increasing difficulty. 
To familiarize the participants with the setup of the Marble Drop games, participants were 
first presented four trivial two-bin games that did not require ToM reasoning (Figure 5.1a). 
These two-bin games were followed by a set of eight three-bin games (Figure 5.1b), and a set 
of eight four-bin games (Figure 5.1c). The three-bin games require first-order ToM, because 
the participants have to reason about the decision of Player 2 at the second decision point 
(i.e., set of trapdoors). As discussed earlier, the four-bin games require second-order ToM. 
Each training game was played until either the participant or the computer decided to stop 
the game, by removing the left-side trapdoor, or until the last possible decision was made. 
After each game, participants were presented feedback displaying either “correct” if they 
obtained the darkest possible marble, or “incorrect” if they failed to do so. The feedback never 
indicated why a response was incorrect. Thus, participants had to find out themselves why an 
incorrect decision was incongruent with the other player’s mental state. As the participants’ 
performance on the eight four-bin games is indicative of their pre-experimental level of 
second-order ToM reasoning, we have included these items in the analyses. 

Prompting participants for predictions was manipulated in the first test block, which 
consisted solely of second-order games. Participants were randomly assigned to either the so-
called Prompt group (10 participants), or the so-called No-Prompt group (13 participants). 
Participants in the Prompt group were asked to enter their prediction of Player 2’s decision 
at the second decision point before they were asked to enter their own decision at the first 
decision point. Participants in the No-prompt group were not explicitly asked to make any 
predictions. In this block, games stopped immediately after entering a decision. Feedback was 
presented after entering a prediction, if a prediction was queried, and after entering a decision. 
Feedback mentioned only whether a response was (in)correct. The first test block consisted 
of 32 trials; each of the 16 payoff structures was presented twice. The order was randomized.

The second test block was similar to the first one except that none of the participants were 
explicitly queried for a prediction anymore. This block also consisted of 32 trials. 

Results and discussion

Behavioral results

Figure 5.2 depicts the mean accuracy of participants playing second-order Marble Drop 
games. The mean accuracy scores were analyzed by means of repeated-measures ANOVA. 
However, the scores were first arcsine-transformed to preserve homogeneity of variance. 
The analysis included the between-subjects factor prompting (No-prompt / Prompt) and the 
within-subjects factor block (Test Block 1 / Test Block 2).

In contrast to our earlier work (Meijering et al., 2011), the factor prompting was not 
significant, F(1, 21) = .1, ns. On average, asking participants to predict Player 2’s decision did 
2	  Knowing whether the opponent was a computer player did not have an effect in Hedden and Zhang’s (2002) 
study.
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not (positively) influence their performance. The lack of an overall effect of prompting might 
have been due to ceiling effects, as the mean accuracy was very high, around 90% in both test 
blocks.

The interaction between prompting and block was significant: F(1, 21) = 4.61, p = .044. 
On average, accuracy increased from Test Block 1 to Test Block 2, F(1, 21) = 5.09, p = .035, 
but that effect was mainly due to increasing accuracy in the No-prompt group. A possible 
explanation for the interaction might be that participants in the Prompt group, in contrast 
to participants in the No-prompt group, had to adjust to an experimental procedure that 
changed with each subsequent test block. This could have hindered their performance, which 
did not significantly differ between the two test blocks, t(9) = .12, ns.

Eye tracking results

Eye movements were measured to distinguish between the strategies that participants may 
have used in second-order Marble Drop games, as backward and forward reasoning would 
clearly yield distinctive successions of fixations on each player’s payoffs. The default parameters 
of the Eyelink 1000 eye tracker were used to extract fixations from the eye movement data. 
Figure 5.3 gives an example of a participant’s succession of fixations in a particular game. 

Each pair of payoffs was considered to be an area of interest (AOI). However, we did 
not define fixed AOIs with specific x and y coordinates. As the AOIs corresponding with 
the payoff-pairs are relatively small, a slightly inaccurate calibration of the eye tracker to a 
participant’s dominant eye would shift his or her fixations outside of the AOIs. Therefore, 
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Figure 5.2: Mean accuracy in No-prompt and Prompt 
conditions, depicted separately for test blocks 1 and 2. 
Error bars represent standard errors.

Figure 5.3: Example of a participant’s fixations in 
a particular game. The succession of fixations is 
indicated by arrows, which are superimposed on the 
payoffs and trapdoors (i.e., decision points). The first 
15 fixations are depicted in black, fixations 16 – 30 in 
red, fixations 31 – 45 in green, and fixations 46 – 61 are 
depicted in blue. The succession of fixations on payoffs 
and trapdoors seems to indicate forward reasoning, 
followed by backtracking, which is indicated by the 
blue arrows that eventually go back to the first payoff 
pair.
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cluster analysis was used to find four clusters of fixations in each participant’s dataset, each 
cluster corresponding to a payoff-pair. The clustering algorithm used was a more robust 
version of k-means clustering (Kaufman & Rousseeuw, 1990). Fixations in the first (i.e., 
leftmost) cluster were labeled with the letter A; fixations in the second cluster were labeled 
with the letter B, and so forth. The labels are depicted above the payoff-pairs in Figure 5.1c. 
All following analyses solely include fixations that fall within these AOIs. 

Onset times of fixations on payoff-pairs
We analyzed the in-game times at which each cluster (i.e., payoff-pair) was first fixated, as these 
so-called onset times may indicate a general direction of reasoning in second-order Marble 
Drop games. The onset times were averaged across trials, separately for each participant (i.e., 
the 8 second-order trials from the practice block, and 32 trials from test block 2). The onset 
times were log-transformed, because their distribution was skewed to the right. The mean 
onset times (across participants) are depicted in Figure 5.4. We collapsed the data across the 
Prompt group and the No-prompt group, as there were no significant differences between 
these groups.

Figure 5.4a shows monotonically increasing onset times in the practice block, which 
indicates a forward (i.e., left-to-right) general direction of reasoning. All pairwise comparisons 
are significant, AB: p < .001; AC: p < .001; AD: p < .001; BC: p < .001; BD: p < .001; CD: p = 
.028. The p-values are corrected by means of the Bonferroni-Holm method (Holm, 1979) to 
account for family-wise error rate.
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Figure 5.4: The logarithm of the onset times (in msec) of fixations on each payoff-pair. The 
onset times are depicted separately for the practice block (a) and Test Block 2 (b). The error 
bars represent standard errors.

Presumably, participants’ strategies were most stable near the end of the experiment. 
However, the timing of the first fixations on each payoff-pair does not inform us on what these 
strategies might have been (see Figure 5.4b). The onset times do not increase monotonically 
anymore, in contrast to the onset times in the practice block. However, payoff-pairs A and 
B are still fixated earlier than payoff-pairs C and D. The average difference in onset times is 
significant, t(45)= -2.76, p = .008.

As the onset times do not strongly correspond with either one of the candidate strategies, 
we analyzed the entire fixation sequences, which might reveal patterns corresponding to 
backward and/or forward reasoning.
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Fixation sequences
Before presenting the statistics on the entire fixation sequences, we will first explain the 
statistical procedure, which involves several steps.

For each game, we predicted which payoffs would be fixated, and in which succession, 
given a particular strategy. The left panel of Figure 5.5 depicts an example game, the middle 
panel depicts fixation sequences that were predicted on the basis of backward reasoning, 
and the right panel depicts fixation sequences that were predicted on the basis of forward 
reasoning plus backtracking. For illustrative purposes, fixations on Player 2’s marbles were 
labeled with lowercase letters a, b, c, and d, and fixations on Player 1’s marbles with uppercase 
letters A, B, C, and D. Each line in the last two panels of Figure 5.5 represents a possible 
sequence of fixations given the corresponding strategy. 

Backward reasoning yields eight possible fixation sequences for each individual game. 
Namely, a comparison between two payoffs can yield two possible successions of fixations, for 
example <D, C> versus <C, D>, and there are three comparisons to be made when applying 
backward reasoning. Thus, there is a total of two to the power of three, which is eight, possible 
fixation sequences. We granted forward reasoning plus backtracking the same degrees of 
freedom by applying the same procedure to the backtracking part, which is essentially the 
same as backward reasoning.

Given that we predicted fixations on individual marbles, we had to label each observed 
fixation for the specific marble that was fixated. We used cluster analyses to find two sub-
clusters within each of the previously found payoff-pair clusters. Each left-side sub-cluster 
was considered to contain fixations on Player 1’s marbles, and each right-side sub-cluster was 
considered to contain fixations on Player 2’s marbles.

It is important to note that our implementations of the two strategies are idealizations, as 
we did not implement cognitive constraints such as, for example, working memory capacity. 
Consequently, the predicted fixation sequences did not contain repetitions. In contrast, the 
observed fixations sequences did contain repetitions, as participants would re-fixate payoffs 
if they had forgotten previously attended payoffs and comparisons. Figure 5.3 clearly shows 
an example of a participant repeatedly fixating payoffs. We accounted for these memory 
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Figure 5.5: An example second-order Marble Drop game (left panel), and associated 
fixation sequences predicted on the basis of backward reasoning (middle panel) and 
forward reasoning plus backtracking (right panel). The fixation sequences represented by 
the black lines are annotated for AOI (A – D; a – d), and those represented by the grey lines 
are not. Player 1’s payoffs are labeled with uppercase A, B, C, and D. Player 2’s payoffs are 
labeled with lowercase a, b, c, and d. The sequences are depicted on “eye movement paths” 
for illustrative purposes.
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effects by collapsing repeating patterns in the observed fixation sequences. For example, both 
AAaBbCd and AaAaBbCd would collapse to AaBbCd.

To evaluate how closely our predicted fixation sequences match the observed fixation 
sequences, we calculated the Levenshtein distance, which is the minimal number of insertions, 
deletions, and substitutions to get from one sequence to another. For example, if an observed 
fixation sequence for the game in Figure 5.5 would consist of AOIs <D, d, C, c, b, B, A>, we 
would find strong evidence in favor of backward reasoning, as it differs only one fixation (i.e., 
d) from one of the predicted sequences of AOIs <D, C, c, b, B, A>. Importantly, the observed 
fixation sequence is compared with a set of eight predicted fixation sequences, thus eight 
Levenshtein distances are calculated, and the minimum Levenshtein distance is taken. To 
account for varying lengths of observed and predicted fixation sequences, the Levenshtein 
distance is normalized by dividing it by the length of whichever of the two sequences is longer, 
either the observed or the predicted one. 

According to the procedure described above, the normalized Levenshtein distance 
was calculated for each individual trial (i.e., 32 trials per participant per test block). The 
normalized Levenshtein distance was averaged across trials, separately for each participant. 
Figure 5.6 depicts the mean normalized Levenshtein distance in Test Block 2, in which 
strategy preference is most stable. 

We collapsed the data across the No-prompt group and the Prompt group, as the eye 
movement patterns did not significantly differ between these groups. Both the main effect 
of prompting and the interaction between strategy and prompting were not significant, F(1, 
21) = .46, ns, and F(1, 21) = .71, ns, respectively. There are two possible explanations for 
this: Either prompting participants for predictions did not affect their strategy preference, or 
participants in the No-prompt group developed similar strategies on their own. 

Figure 5.6 shows that, on average, the observed fixation sequences are most similar to 
the fixation sequences predicted on the basis of forward reasoning plus backtracking. The 
normalized Levenshtein distance is significantly larger for predictions based on backward 
reasoning, t(22) = 5.64, p < 0.001. Figure 5.6 also depicts a baseline measure (dotted line), 
which is the average normalized Levenshtein distance between observed fixation sequences, 
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Figure 5.6: The average normalized Levenshtein distance between the observed sequence, 
on the one hand, and the closest of the set of predicted sequences, on the other hand. The 
dotted line is considered a baseline measure, which is the average normalized Levenshtein 
distance between an observed sequence and its randomized version. The error bars 
represent standard errors.
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on the one hand, and each sequence randomized, on the other hand. Randomized sequences 
contain the same frequency of fixations as their observed counterparts, but nevertheless, 
forward reasoning plus backtracking fits the observed behavior significantly better than the 
baseline measure, t(22) = 4.91, p < 0.001. 

Sub-patterns in the fixation sequences
To get a better idea of which specific components of the hypothesized strategies describe 
participants’ reasoning best, we performed exploratory statistics on sub-patterns in the fixation 
data. The analysis concerns the fixation data from Test Block 2, as participants’ strategies are 
assumed to be most stable in that test block. We will first describe the procedure of extracting 
sub-patterns from the fixation sequences, and then provide the results.

We analyzed sub-patterns of three subsequent fixations, as three is the minimal number 
of fixations that makes a pattern informative of either a forward or backward succession of 
comparisons between marbles. For example, subsequent fixations on payoff-pairs C, D, and 
B unambiguously indicate a backward succession of comparisons, even though the first two 
fixations seem to indicate a forward succession. 

All subsequent triplets of fixations were extracted from each individual fixation sequence. 
If, for example, a trial consisted of fixations on payoff-pairs CDBCAB, sub-patterns CDB, DBC, 
BCA, and CAB were extracted. We considered fixations on payoff-pairs instead of fixations 
on individual payoffs (e.g., C versus c), as the latter would yield too many combinations with 
very low frequencies. 

The results of the analyses are presented in Table 5.1, which shows the 50% most frequent 
forward and backward triplets. As can be seen in Table 5.1, the 50% most frequent triplets 
contain as many forward as backward triplets, and the frequencies of these triplets are quite 
similar. This seems to imply that, on average, participants made as many forward as backward 
comparisons between marbles.

We also analyzed the (in-game) onset times of forward and backward triplets, as these 
help us to determine whether forward and backward comparisons were made alternately, or 
forward comparisons first, followed by backward comparisons. Figure 5.7 depicts the relative 

Triplets Proportion
Forward triplets BCD 0.093

ABC 0.058
BDC 0.031
ABD 0.024
ACD 0.019

Backward triplets DCB 0.079
CDB 0.055
CBA 0.047
DCA 0.042
DBC 0.022

Table 5.1: The 50% most frequent forward and backward fixation triplets. The frequency of 
each triplet was divided by the total number of triplets, n = 6126, yielding the proportions 
given in the last column.
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likelihood (or probability density function) of onset times of all the triplets, and thus the 
likelihood of observing a particular triplet at a particular time in a game. Figure 5.7 clearly 
shows that all forward triplets have a relatively high likelihood of being observed early in a 
game, between zero and two seconds, whereas the highest likelihood of observing backward 
triplets is distributed over the entire range of 0 to 5 seconds.

Backward triplets correspond with either backward reasoning or the backtracking part 
of forward reasoning, depending on onset time. Early onset times would indicate backward 
reasoning, whereas late onset times would indicate backtracking. Figure 5.7 clearly shows 
that the densities of the backward triplets have less prominent peaks than the densities of the 
forward triplets. The flat likelihood distribution ranging from 0 to 5 seconds seems to imply 
that, at least in some games, backward reasoning was applied (indicated by early onsets). The 
finding that after 2 seconds the density functions of forward triplets are similar to those of the 
backward triplets implies that forward and backward comparisons were made equally often, 
presumably in alternating sequence. Figure 5.3 shows an example of such a pattern.

In sum, the densities in Figure 5.7 correspond best with the forward reasoning plus 
backtracking strategy. Given that the proportions of forward and backward triplets are quite 
similar, we can conclude that at early onset times forward triplets are more probable to be 
observed than backward triplets. In other words, payoffs are most likely to be compared in a 
forward succession until the last decision point is reached. Thereafter, backtracking takes place 
if the optimal outcome appears to be available at an earlier decision point. This succession, of 
forward comparisons followed by backward comparisons can be iterated multiple times until 
the highest attainable outcome is ascertained.

General conclusions

We investigated strategy preference in a ToM task. Therefore, it was crucial that our task was 
successful at capturing ToM reasoning. Fortunately, mean accuracy was around 90%, close to 
ceiling, which means that the participants successfully applied (second-order) ToM in a large 
proportion of the trials (i.e., Marble Drop games). 

Eye movements were measured to discern two candidate strategies with opposite general 
directions of reasoning: backward reasoning and forward reasoning plus backtracking. The 
onset times of the first fixations on each payoff-pair seem to imply that, in the practice block, 
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participants compared the payoffs in a forward succession. We analyzed the entire fixation 
sequences in the second test block and found that the forward reasoning plus backtracking 
strategy described the fixation sequences best. The observed fixation sequences were more 
similar to the fixation sequences predicted on the basis of forward reasoning plus backtracking 
than to the fixation sequences predicted on the basis of backward reasoning. Furthermore, by 
looking at sub-patterns in the fixation data, we found that, early in games, the likelihood of 
observing forward successions of comparisons between payoffs is higher than the likelihood 
of observing backward comparisons. These findings suggest that participants were applying 
forward reasoning, even though backward reasoning is the game-theoretical favorite strategy.

A possible explanation for a stronger preference for forward reasoning plus backtracking 
might be that backward reasoning requires deep structural knowledge of the task. Fu and 
Gray (2004) argued that in many interactive tasks, experts’ behavior is rather dependent on, 
or even driven by, surface characteristics. Thus, the strong spatial and temporal structure of 
our task might have had a role in the adoption of forward reasoning (plus backtracking). 
Both the task display and the physics in Marble Drop games strengthen the intuitive and 
chronological direction of progressing decision points and comparing payoffs in a forward 
succession. Further research is needed to determine to what extent similar, or other, surface 
features might encourage the adoption of other strategies.

One could argue against forward reasoning by saying that the left-to-right (i.e., forward) 
fixations on the payoff-pairs merely represent a ‘scanning phase’ in which the payoffs are 
explored. However, this explanation does not hold since the participants kept fixating on 
the decision points (i.e., trapdoors) throughout the entire experiment. In fact, the fixations 
on the payoffs seemed to be interleaved with fixations on the trapdoors. Figure 5.3 provides 
an example of this pattern. For scanning purposes only, fixations on trapdoors are unlikely 
given that the trapdoors did not vary during the entire experiment (whereas the marbles did 
vary with each game). A more realistic and functional explanation for fixating trapdoors is 
reasoning, for example, about “what would happen if the other player opened the left trapdoor”. 

To conclude, ToM reasoning in games such as Marble Drop seems to progress in a forward 
succession, from causes (or possible decisions) to possible effects. Lacking a deep structural 
understanding of the logical problems posed in Marble Drop games, participants preferred to 
use a well-learned strategy, very similar to causal reasoning, even though it was not the most 
efficient strategy in this context.
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Chapter 6 
 
Modeling inference of mental states: As simple as 
possible, as complex as necessary

Abstract

Behavior oftentimes allows for many possible interpretations in terms of mental states, such 
as goals, beliefs, desires, and intentions. Reasoning about the relation between behavior 
and mental states is therefore considered to be an effortful process. We argue that people 
use simple strategies and thus expend less effort as a way of dealing with limited cognitive 
resources. To test this hypothesis, we developed a computational cognitive model, which was 
able to simulate previous empirical findings: People start with simple strategies first, and only 
start revising their strategies when necessary. The model could simulate these findings by 
means of an interaction between factual knowledge and problem solving skills. At first, the 
model only considers its own goal, the most basic problem solving skill. Later, the model 
learns to attribute its problem solving skills to the other player, which only happens if its 
successes – stored as factual knowledge in declarative memory – do not increase anymore. 
The model was validated by means of a comparison with findings of a developmental study. 
This comparison showed that children use the same simple strategies that the model used. To 
conclude, the model was able to simulate two empirical findings: (1) People try to use simple 
strategies to infer mental states of others, and (2) they are able to improve such inference by 
attributing their own strategies to the other player.

This chapter was submitted to a journal and is currently under revision.
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Introduction

In social interactions, we try to understand others’ behavior by reasoning about their goals, 
intentions, beliefs, and other mental states. Reasoning about mental states requires a so-
called theory of mind, abbreviated ToM (Baron-Cohen, Leslie, & Frith, 1985; Wellman, Cross, 
& Watson, 2001; Wimmer & Perner, 1983). ToM has been implemented in computational 
cognitive models before (Hiatt & Trafton, 2010; Van Maanen & Verbrugge, 2010). However, 
these models either simulated one specific instance of ToM (Hiatt & Trafton, 2010) or 
attributed too much rationality to human reasoning (Van Maanen & Verbrugge, 2010). Here, 
we present a model that simulates application of various ToM strategies, ranging from simple 
strategies to full-blown recursive ToM. It is based on previous empirical results (Meijering, 
Van Maanen, Van Rijn, & Verbrugge, 2010; Meijering, Van Rijn, Taatgen, & Verbrugge, 2011) 
and is validated by means of a re-analysis of a previous developmental study by Flobbe et al. 
(2008). The model can explain why people use strategies that are relatively simple, while still 
being successful at inferring mental states of others.

Many studies have shown that people cannot always account for another’s mental states 
in order to predict their behavior, particularly in the context of two-player sequential games 
(e.g., Flobbe et al., 2008; Hedden & Zhang, 2002; Raijmakers, Mandell, Van Es, & Counihan, 
2013; Zhang, Hedden, & Chia, 2012). Sequential games require reasoning about complex 
mental states, because Player 1 has to reason about Player 2’s subsequent decision, which 
in turn is based on Player 1’s subsequent decision (Figure 6.1). Typically, performance is 
suboptimal and that is probably because players do not have a correct model of the other 
player’s mental states (Johnson-Laird, 1983). By means of hypothesis testing, they may try 
to figure out which model works best in predicting the other player’s behavior (Gopnik & 
Wellman, 1992; Wellman et al., 2001). However, a particular action or behavior can have 
many possible mental state interpretations (Baker, Saxe, & Tenenbaum, 2009), and testing all 
these interpretations strains our cognitive resources. 

To alleviate cognitive demands, people generally start testing simple models or strategies 
that have been proven successful before (Todd & Gigerenzer, 2000). Because application of 
ToM and especially recursive ToM is an effortful process (Keysar, Lin, & Barr, 2003; Lin, 
Keysar, & Epley, 2010; Qureshi, Apperly, & Samson, 2010), reasoning about mental states 
probably also comprises the use of simple strategies. So where do these strategies come 
from? We hypothesize that they are a legacy of our childhood years. Raijmakers et al.’s (2013) 
findings corroborate this claim, as the children in their study consistently used strategies that 
were not fit to deal with the logical structure of the games presented to them. The strategies 
sometimes did yield the best possible outcome, however, which may be an explanation for 
why they still exist in adult reasoning: Simple strategies do not exhaust cognitive resources 
and are appropriate in a wide range of circumstances. Indeed, our computational cognitive 
model will show that the presence of simple strategies depends on the proportion of games in 
which they yield an optimal outcome.

In this study, we present a computational cognitive model that simulates inference of mental 
states in sequential games. The model initially uses a simple strategy that ignores many task 
aspects. However, if the model’s strategy does not work, it learns to acknowledge that the other 
player has a role in its outcome. The model will therefore start attributing its own strategy to 
the other player. We will show that this process can account for the differential learning effects 
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in Meijering et al.’s study (2011; also see Chapter 2 in this dissertation), in which participants 
adopted distinct strategies based on the training regimen that was administered to them. To 
validate the model, the developmental study of Flobbe et al. (2008) was re-analyzed, searching 
for patterns that are indicative of the use of simple strategies in children. 

Before we explain the model, we will first explain the empirical findings on which it is 
based. 

Empirical findings

Meijering et al. (2011) studied second-order ToM reasoning in two-player sequential games. 
Take the game in Figure 6.1 as an example game: Each end node contains a pair of payoffs, 
left-side payoffs belonging to Player 1 and right-side payoffs belonging to Player 2. The end 
node in which a game is stopped determines the payoff each player obtains in that particular 
game. Each player’s goal is to obtain his or her greatest attainable payoff. As a player’s outcome 
depends on the other player’s decision, both players have to reason about one another’s mental 
states. Participants are always assigned to the role of Player 1, and decide at the first decision 
point whether to stop the game at A or to continue to the next decision point, which is Player 
2’s decision between his payoff in B and his payoff in either C or D, which in turn depends on 
Player 1’s decision between Player 1’s payoffs in C and D. Thus, before making a decision at 
the first decision point, participants have to reason about Player 2, who in turn has to reason 
about Player 1’s subsequent decision. In other words, participants have to apply second-order 
ToM when making a decision. 

Meijering et al.’s study was based on the findings of Hedden and Zhang (2002; 2012) 
and Flobbe et al. (2008). Flobbe et al. had raised some concerns about Hedden and Zhang’s 

Player 1

Player 1

Player 2
A (3, 2)

B (4, 3)

C (2, 1) D (1, 4)

I

II

III

Figure 6.1: An extensive form representation of a two-player sequential game. Player 1 
decides first, Player 2 second, and Player 1, again, third. The decision points are indicated 
in Roman numerals (I – III). Each end-node has a pair of payoffs, of which the left-side is 
Player 1’s payoff and the right-side Player 2’s payoff. Each player’s goal is to obtain their 
highest possible payoff. In this particular game, the highest possible payoff for Player 1 is a 
4, which is obtainable because Player 2’s highest possible payoff is located at the same end 
node (i.e., B). Player 2’s payoff of 4 is not obtainable because Player 1 would decide "left" 
instead of "right" at the third decision point (III).
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training procedure, because it consisted of so-called trivial games (Figure 6.2; right panel), 
which are easier to play than truly second-order games such as in Figure 6.1. Trivial games 
are easier because Player 2 does not have to reason about Player 1’s decision at III: Player 2’s 
payoff in B is either lower or higher than both his payoffs in C and D. Consequently, Player 
2 does not have to apply ToM, and Player 1 can suffice with first-order ToM. Flobbe et al. 
therefore argued that the training of Hedden and Zhang does not prepare people to play 
truly second-order ToM games. To test this claim, Meijering et al. administered two types of 
training procedures. 

One group of participants was administered Hedden and Zhang’s training procedure, 
which will henceforth be referred to as Undifferentiated Training, as all games had three 
decision points. The other group was administered Flobbe et al.’s training phase, but slightly 
modified (cf. Meijering et al., 2011). The latter training procedure will henceforth be referred 
to as Stepwise Training, as each additional decision point was introduced in subsequent blocks 
of games (Figure 6.2; left panel). Meijering et al. hypothesized that these training procedures 
would have distinct effects on strategy formation and thus performance. They predicted that 
Stepwise Training would facilitate participants to incorporate mental states of increasing 
complexity into their decision making process, yielding high accuracy. Undifferentiated 
Training, in contrast, would not motivate participants to develop recursive ToM, as they could 
suffice with application of first-order ToM. As expected, the participants that were assigned 
to Stepwise Training performed better than the participants assigned to Undifferentiated 
Training (see Figure 6.5). 

One specific behavioral pattern is of particular interest to validate the model: The 
performance of participants assigned to Undifferentiated Training rose to ceiling during 
the training phase and dropped again when the experimental phase started (Figure 6.5). We 
hypothesize that the participants applied simple, child-like strategies during the training 
phase, because these strategies worked and did not consume much cognitive resources. At 
the start of the experimental phase, however, these strategies did not work anymore and 
accuracy dropped, because the games, while superficially similar, required more complex 
reasoning. Nevertheless, accuracy increased again over the course of the experimental phase, 
as the participants were able to revise their strategies. We will show that our computational 
cognitive model can simulate this process: The model’s most important characteristic is that 
the complexity of its reasoning gradually increases by repeatedly attributing its own (evolving) 

Player 1

Player 1

Player 2
A (3, 2)

B (4, 3)

C (2, 1) D (1, 4)

Player 1

Player 2
A (2, 1)

B (3, 2) C (1, 3)

Player 1

A (2, 1) B (1, 3)

4 zero-order games 8 �rst-order games 8 second-order games

Player 1

Player 1

Player 2
A (3, 1)

B (4, 2)

C (2, 4) D (1, 3)

24 trivial games

Figure 6.2: Extensive forms of example games (see Figure 6.1 for a detailed explanation). 
Stepwise Training consisted of 4 zero-order, 8 first-order, and 8 second-order games. 
Undifferentiated Training consisted of 24 trivial games. Each game had a unique 
distribution of payoffs.
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strategy to the other player. 

Computational cognitive model

The model1 is implemented in the ACT-R cognitive architecture (Anderson, 2007; Anderson 
et al., 2004). ACT-R comprises a production system, which executes if-else rules, and contains 
declarative knowledge, which is presented as memory representations, or so-called chunks. 
In addition, ACT-R also includes modules that simulate specific cognitive functions, such as 
vision and attention, declarative memory, motor processing, et cetera. The results of these 
simulations appear as chunks in the modules’ associated buffers, which the model continually 
checks (and manipulates) by means of its production system. ACT-R imposes natural 
cognitive constraints, as buffers can hold just one chunk at a time, and production rules can 
only fire successively, whenever their pre-specified conditions are matched. ACT-R does allow 
for parallel processing whenever a task induces cognitive processing in distinct modules. The 
model that we present here runs atop of ACT-R. 

The model’s behavior partially depends on memory dynamics. It needs to retrieve factual 
knowledge from declarative memory, and both the speed and success of retrieval depend on 
the so-called base-level activation of a fact (or chunk). The higher the base-level activation is, 
the greater the probability and speed of retrieval. The base-level activation in turn is positively 
correlated with the number of times a fact is retrieved from memory and the recency of the 
last retrieval.

The model simulates inference of mental states in sequential games. It uses a simple 
strategy at first and gradually revises that strategy until it can process recursive mental states. 
We consider the application of a particular strategy, and revising that strategy, to be deliberate 
processes. Therefore, application and revision are implemented by means of an interaction 
between factual knowledge and problem solving skills. Arslan, Taatgen, and Verbrugge (2013) 
successfully used a similar approach in modeling the development of second-order ToM in 
another ToM paradigm (i.e., the false-belief task). Van Rijn, Van Someren, and Van der Maas 
(2003) have successfully modeled children’s developmental transitions on the balance scale 
task in a similar vein. Factual knowledge is represented by chunks in declarative memory, 
which store what strategy the model should be using. The problem solving skills, or strategy 
levels, are executed by (recursively) applying a small set of production rules. The model’s goal 
is to make decisions that yield the greatest possible payoff. Decisions are either ‘stop the game’ 
or ‘continue it to the next decision’. The model was presented with the same distributions of 
payoffs (i.e., items) as were presented to the participants.

The model’s initial simple strategy is to consider only its own decision at the first decision 
point and to disregard any future decisions. The model’s decision is based on a comparison 
between its (i.e., Player 1’s) payoff in A and the maximum of its payoffs in B, C, and D. If the 
model’s payoff in A is greater, the model will decide to stop. Otherwise, the model will decide 
to continue. By using this simple strategy the model seeks to maximize its own payoff, which 
can be considered a direct translation of the instructions given to the participants.

This strategy will work in some games but not in all. Whenever the strategy works, 
the model receives positive feedback and stores in declarative memory what strategy it is 
currently using. In fact, the model stores a strategy level, which is level-0 in the case of the 
1	  The model can be downloaded from http://www.ai.rug.nl/~meijering/iccm2013
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simple strategy described above. Whenever the strategy does not work, the model receives 
negative feedback and stores in declarative memory that it should be using a higher strategy 
level (e.g., level-1).

The higher strategy level means that the model should attribute whatever strategy it was 
using previously to the other player at the next decision point. In the case of strategy level-1, 
the model attributes the model’s initial simple strategy (i.e., level-0) to Player 2. Accordingly, 
the model is applying first-order ToM, as it reasons about the mental state of Player 2, who 
considers only his own payoffs and disregards any future decisions.

Again, this strategy will work in some games but not in all. Whenever it does not work, the 
model receives negative feedback and stores in declarative memory that it should be using a 
higher strategy level. At a higher strategy level, the model will attribute whatever strategy level 
it was using previously to Player 2. At strategy level-2, the model attributes strategy level-1 
to Player 2, who in turn will attribute strategy level-0 to the player deciding at third decision 
point: Player 1. Now the model is applying second-order ToM.

Assumptions

The model is based on two assumptions. The first assumption is that participants, unfamiliar 
with sequential games, start playing according to a simple strategy that consists of one 
comparison only: Participants compare their current payoff, when stopping the game, 
against the maximum of all their future payoffs, when continuing the game. This strategy 
can be considered the simplest possible strategy, as participants who are using it ignore the 
consequences of any possible future decision, whether their own or the other player’s. 

If participants obtain expected outcomes, they do not have to revise their strategy. 
However, if participants obtain unexpected outcomes, they have to acknowledge that the 
unexpected turn of events was caused by the other player deciding at the next decision point. 
Reasoning about the other player, participants can only attribute a strategy they are familiar 
with themselves. This is our second assumption, which is based on variable frame theory 
(Bacharach & Stahl, 2000). Imagine a scenario in which two persons are asked to select the 
same object from a set of objects with differing shapes and colors but one person is completely 
colorblind. The colorblind person cannot distinguish the objects based on color, nor can he 
predict how the other would do that. Therefore, the colorblind person can only predict or 
guess what object the other would select based on which shape is the least abundant. The 
seeing person should account for the colorblind person’s reasoning and also choose the object 
with the least abundant shape. This variable frame principle also applies to reasoning about 
others: We can only attribute to others goals, intentions, beliefs, and strategies that we are 
familiar with ourselves.

Mechanisms

The simple strategy is implemented in two production rules. The first production rule 
determines what the payoff will be when stopping the game; the other production rule 
determines what the highest future payoff could possibly be when continuing the game. Both 
productions are executed from the perspective of whichever player is currently deciding 
(Figure 6.3). The model will attribute this simple strategy from the current decision point to 
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the next, each time the model updates its strategy level (i.e., incrementing strategy level by 
one). The model will thus heighten its level, or order, of ToM reasoning.

Zero-order ToM
Before the model starts applying its strategy, it needs to construct a game state representation 
to store the payoffs that are associated with a stop and continue decision, respectively. To 
construct a game state, the model first retrieves from declarative memory what strategy level 
it is currently using. At the beginning of the experiment, strategy level has a value of 0, which 
represents the simple strategy. After retrieving strategy level, the model constructs its current 
game state.

Starting with the simple strategy, the model will determine its own stop and continue payoffs 
(see Figure 6.3, left panel), which will be stored in the game state representation. The model 
will then compare these payoffs and make a decision. After the model has made a decision, 
it will update declarative memory by storing what strategy level the model should be playing 
in the next game: If the model’s decision was correct, the model should continue playing its 
current strategy level; otherwise the model should be playing a higher strategy level.

After playing a couple of games in which the simple strategy (i.e., level-0) does not work, 
the higher strategy level (i.e., level-1) will have a greater probability of being retrieved, as its 
base-level activation increases more than the simple strategy’s base-level activation. At the 
start of the next few games, before the model constructs its game state, it will begin retrieving 
strategy level-1 from declarative memory.

First-order ToM
Playing strategy level-1, the model will first determine what payoff is associated with a stop 
decision at the first decision point (I). However, before determining what payoff is associated 
with a continue decision, the model needs to reason about the future and therefore consider 
the next decision point (II). It attributes strategy level-0 to Player 2, who is deciding at II. 

STOP

CONTINUE

max

STOP

CONTINUE

max

3, 2

4, 3

2, 1 1, 4

4, 3

2, 1 1, 4

3 < max(4, 2, 1) => Continue 3 < max(1, 4) => Continue

Figure 6.3: Depiction of the simple strategy. In the left panel, the model compares its 
payoff if it would stop (light grey) against its maximum possible payoff if it would continue 
(dark grey). In the right panel, the model compares Player 2’s payoff if Player 2 would 
stop (light grey), against Player 2’s maximum possible future payoff (dark grey). The left 
panel schematically represents the application of zero-order ToM, and the right panel the 
attribution of zero-order ToM to the other player.
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Later, the model will return to the first decision point and determine what payoff is associated 
with a continue decision.

At II, the model will apply strategy level-0, but from the perspective of Player 2 (Figure 
6.3, right panel). When reasoning about Player 2’s decision, the model constructs a new game 
state, which references the previous one. The previous games state is referenced, because the 
model needs to jump back to that game state and determine what payoff is associated with a 
continue decision in that game state. At II, the model will execute the same production rules 
that it executed before when it was playing according to strategy level-0: It will determine 
what payoffs are associated with a stop and a continue decision, but from the perspective of 
Player 2.

The model will not produce a response whenever it determines the stop and continue 
payoffs at II, because the problem state at II references a previous one (i.e., I). The model will 
therefore backtrack to the previous game state representation, which did not yet have a payoff 
associated with a continue decision. That payoff can now be determined based on the current 
game state (i.e., Player 2’s decision). The model will retrieve the previous game state from 
declarative memory.

After retrieving the previous game state representation, the model has two game states 
stored in two separate locations, or buffers: The current game state is stored in working 
memory, or the problem state buffer (Anderson, 2007; Borst, Taatgen, & Van Rijn, 2010), 
and the previous game state is stored in the retrieval buffer, which belongs to the declarative 
memory module. The model will determine what payoff is associated with a continue decision 
in the previous game state (stored in the retrieval buffer) given the decision based on the 
current game state (in the problem state buffer). It will update the previous game state and 
store it in working memory.

Playing strategy level-1 and being back in the previous game state, there is no reference to 
any previous game state and the model will make a decision based on a comparison between 
the payoffs associated with the stop and continue decisions. As explained previously, the model 
will stop if the payoff associated with stopping is greater; otherwise the model will continue.

Again, after the model has made a decision, it will update declarative memory by storing 
what strategy level the model should be playing in the next game(s). If the model’s decision 
is correct, it will apply the current strategy level. Otherwise, the model will revise its strategy 
level by storing in declarative memory that it should be using strategy level-2 in the next 
game(s). 

Second-order ToM
The model will first determine what payoff is associated with stopping the game and then 
consider the next decision point. There, the model proceeds as if it were playing strategy 
level-1, but from the perspective of Player 2. In other words, the model is applying second-
order ToM.

The strategy described above closely fits the strategy of forward reasoning plus backtracking 
(Meijering, Van Rijn, Taatgen, & Verbrugge, 2012; Chapter 5 in this dissertation). Meijering 
et al. (2012) conducted an eye-tracking study, and participants’ eye movements reflected a 
forward progression of comparisons between payoffs, followed by backtracking to previous 
decision points and payoffs. Such forward and backward successions are present in strategy 
level-2 as well: Payoffs of stop decisions are determined one decision point after another, and 
this forward succession of payoff valuations is followed by backtracking, as payoffs of previous 
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continue decisions are determined in backward succession.

Results

The model was presented with the same trials as in Meijering et al.’s (2011) study (see also 
Chapter 2 in this dissertation), with stepwise training versus undifferentiated training as 
a between-subjects factor. The model was run 100 times for each training condition. Each 
model run consisted of 20 (stepwise) or 24 (undifferentiated) training games, followed by 64 
truly second-order games. The results are presented in Figures 6.4 and 6.5.

Figure 6.4 shows the proportions of models that apply strategy levels 0, 1, and 2, 
calculated per trial. The left panel of Figure 6.4 shows the output of the models that received 
24 undifferentiated training games before playing 64 second-order games. As can be seen, 
initially all models apply strategy level-0, corresponding with zero-order ToM, but that 
proportion decreases quickly in the first couple of games. The proportion of models applying 
zero-order ToM decreases because that strategy yields too many errors, which can be seen in 
Figure 6.5. The models store in declarative memory that they should be using strategy level-1, 
but it takes a few games before the base-level activation of the level-0 chunk drops below the 
retrieval threshold. After it does, the models start retrieving level-1 chunks and will apply 
strategy level-1, which corresponds with first-order ToM. The proportion of models that 
use strategy level-1 increases up to 100% towards the end of the 24 undifferentiated training 
games. The models do not start applying strategy level-2 during the training phase, because 
strategy level-1 yields correct decisions in all undifferentiated training games, which can be 
seen in Figure 6.5. However, in the experimental games, which are truly second-order games, 
strategy level-1 yields too many errors, and accuracy drops. It takes approximately 40 games 
before the base-level activation of the level-1 chunk has dropped below the threshold in at 
least half of the models. The models gradually start using strategy level-2, and accuracy starts 
to increase again, as can be seen in Figure 6.5.

The right panel of Figure 6.4 shows the output of the models that were presented with 20 
stepwise training games (4 zero-order, 8 first-order, and 8 second-order games) before playing 
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Figure 6.4: Proportion of models that apply strategy levels 0, 1, and 2; plotted as a function 
of trial. The left panel depicts these proportions for the model that received undifferentiated 
training; the right panel depicts the proportions for the model that received stepwise 
training.
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64 second-order games during the experimental phase. As can be seen, all models start 
applying strategy level-0, and they use it longer than the models that received undifferentiated 
training. The reason is that strategy level-0 yields a correct answer in the first four games 
during stepwise training, because those are zero-order games. As can be seen in Figure 6.5 
(right panel), accuracy is 100% in the first few games. In the next eight first-order training 
games (Trials 5 – 12), the proportion of models that apply strategy level-0 decreases, as 
strategy level-0 yields too many errors. Simultaneously, the proportion of models applying 
strategy level-1 increases, as the base-level activation of the level-0 chunk decreases and the 
models start retrieving the level-1 chunk. In the next eight second-order training games 
(Trials 13 – 20), the proportions of models that apply strategy level-0 and level-1 decrease, 
as both strategy levels yield too many errors. Simultaneously, the proportion of models that 
apply strategy level-2 increases. As strategy level-2 yields a correct decision in the remainder 
of the games, accuracy increases up to ceiling, which can be seen in Figure 6.5 (right panel).

The accuracy trends in the models’ output qualitatively fit those of Meijering et al.’s study 
(2011). The quantitative differences are probably due to the fact that not all participants 
started out using the simple strategy, whereas all models did. One possible explanation is that 
some participants started with intermediate-level strategies and, due to large proportions of 
optimal outcomes, did not proceed to the highest level of reasoning. We could account for 
this by storing level-0, level-1, and level-2 chunks in declarative memory, and having the base-
level activation of these chunks follow the distribution of zero-order, first-order, and second-
order ToM in the adult population. A meta-review of (higher-order) ToM in adults and 
children may be a good starting point to find the appropriate distributions. Nevertheless, the 
qualitative trends in the model data, changing as a function of game complexity, correspond 
with the response patterns in the behavioral data. The trends suggest that people use simple 
strategies for as long as these yield expected outcomes.

In the introduction we hypothesized that simple strategies are a legacy of our childhood 
years, and that adults keep using those strategies that have proven themselves successful 
during development. To test this hypothesis, we have re-analyzed the data from Flobbe et al.’s 
(2008) developmental study. We expected that few children would have sufficient cognitive 
resources to apply second-order ToM, and that performance levels would therefore align well 
with lower and intermediate strategy levels. The most obvious prediction is that prevalence 
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Figure 6.5: Proportion of correct decisions, or accuracy, across participants (left panel) and 
models (right panel). The solid lines in the left panel represent the fit of the statistical model, 
which is added to visualize the proportion trends.
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of level-0, level-1, and level-2 strategies can be ranked, where level-0 is the most dominant 
strategy and level-2 is least frequent.

Developmental study

Flobbe et al. (2008) studied the application of second-order ToM in children that were in 
between 8 and 10 years (M = 9;2). They presented the children with sequential games, and 
performance was just above chance-level (57% correct). As children of age 9 are at the brink 
of mastering second-order ToM (Flobbe et al., 2008; Miller, 2009; Perner & Wimmer, 1985), 
we expect the lower and intermediate strategies to be most prevalent in Flobbe et al.’s study, 
which is thus perfect to validate our model. 

We hypothesize that children apply the same simple strategies that are implemented in our 
computational cognitive model. We predict that the children start out with the simplest (i.e., 
zero-order) strategy, and that some will learn to attribute that strategy to the other player. 
Probably few children will learn that the other player, in turn, attributes the simple strategy to 
the player who decides next (i.e., to them). As each child was first asked to predict the other 
player’s decision, before they were asked to make a decision themselves, we have a direct 
measure of the child’s perspective of the other player’s strategy. We will analyze both the 
predictions and the decisions.

Predictions

We applied a binomial criterion to reliably categorize a participant’s predictions as belonging 
to either level-1 or level-2: The predictions in at least 8 out of 10 consecutive games had to be 
congruent with one particular strategy level to label the predictions accordingly. This might 
seem strict, but 8 out of 10 is the minimum quantile that is still significant with a significance 
level of 0.05. As the experiment consisted of 40 second-order games, we categorized each 
child’s responses in 4 sets of 10 games. Figure 6.6 depicts the proportion of children that 
applied either first-order or second-order ToM. These ToM-orders correspond with level-1 
and level-2 in the computational model. 
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Note that sets of predictions that could not be categorized level-1 or level-2 do not 
necessarily imply the use of level-0, because the predictions in those sets could have been 
completely random, or a mixture of the various strategy levels. The decisions are therefore 
analyzed to determine the prevalence of strategy level-0. 

As can be seen in Figure 6.6, the proportion of children that applied first-order ToM by 
attributing strategy level-0 to the other player is greater than the proportion of children that 
applied strategy second-order ToM. Furthermore, many children’s predictions could not 
be labeled according to one of the strategies at all (13 out of 40). These children probably 
switched frequently between multiple possible perspectives, and such switching is difficult 
to reliably capture by means of a statistical model. Nevertheless, most of the children whose 
responses could be categorized, were applying first-order ToM by attributing the simple (i.e., 
level-0) strategy to the other player. Almost none of the children was able to consistently 
attribute strategy level-1 to the other player, thereby applying second-order ToM.

Decisions

As explained above, the predictions required application of first-order ToM at minimum and 
could therefore not be indicative of zero-order ToM. Therefore, the decisions were analyzed 
to determine how many children applied zero-order ToM, ignoring the other player entirely. 
Again, we categorized the decisions based on the binomial criterion that at least 8 out of 10 
consecutive responses should be consistent with application of zero-order ToM (i.e., level-0 
in the model). As can be seen in Figure 6.6, most of the children that consistently responded 
according to one of the strategies applied zero-order ToM when making a decision. This 
is remarkable, because each child that participated in the experimental phase successfully 
passed a training block in which they were required to apply first-order ToM. This finding 
suggests that the children could not see how first-order ToM would fit in the more complex 
games in the experimental blocks. They may have recognized that it did not work, but still 
could not revise their strategy to incorporate an additional ToM level.

To conclude, a re-analysis of Flobbe et al.’s (2008) study shows that few children were 
able to apply second-order ToM (level-2), and that most children used simple strategies. The 
most dominant strategy was the simplest one that did not account for any future decision 
points. Most children seemed to apply zero-order ToM (level-0) while making a decision. 
Some children, though, were able to attribute that simple strategy to the other player, thereby 
applying first-order ToM (level-1). These strategies are the same as those implemented in our 
computational cognitive model. The model is thus supported in two ways: (1) Its most simple 
strategies are found in children, and (2) it learns to revise its strategies as adults do. 

Conclusions

In this study we presented a computational cognitive model that simulates inference of 
mental states in sequential games. More specifically, the model was required to apply ToM 
recursively, a skill that appears to be unique to human intelligence. Many studies have shown 
that people oftentimes fail to apply ToM to interpret the behavior of others (e.g., Apperly et al., 
2010; Keysar et al., 2003; Lin et al., 2010). In this study, in contrast, we show that people do not 
necessarily fail to apply ToM, but rather first apply simple strategies that are computationally 
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less costly. Only when necessary do people revise their strategies to account for complex 
mental states.

The model is based on previous empirical findings (Meijering et al., 2011) that seemed 
to imply that people exploit the possibility of using simple strategies for as long as these pay 
off. We implemented one such simple strategy that ignores any future decisions and simply 
compares the immediate payoff, when stopping a game, against the maximum of all future 
possible payoffs. By means of simple memory dynamics the model either retrieves a chunk 
that specifies that the model should continue using this strategy, or chunks that specify that 
the model should attribute the simple strategy to the player who decides next. Although this 
updating process may seem simplistic at first sight, the model does gradually master second-
order ToM, but only because that is required in the games in this study. In other words, the 
model’s most important dynamics are not task-specific, and because of that, the model is 
flexible and can accommodate many other two-player sequential games.

We found support for the model in the data from Flobbe et al.’s (2008) developmental study 
in which 9-year-old children were presented with similar sequential games. Most children 
used the simple, level-0, strategy when making a decision. The second-most prevalent strategy 
was the level-1 strategy. Using that strategy, the children attributed the simplest possible 
strategy (i.e., level-0) to the other player. Few children were able to apply second-order ToM 
mind. They did not recognize that the other player, in turn, attributed the simplest strategy 
(i.e., level-0) to them. These findings show that the children used the same simple strategies as 
the adults initially used in Meijering et al.’s study. However, the adults were able to revise their 
strategies to achieve the highest required level of ToM reasoning, whereas the children may 
not have had sufficient cognitive resources to achieve that same level of reasoning.

Our notion of zero-order ToM (i.e., strategy level-0) closely maps with the instruction 
given to the participants: to maximize their payoff. This strategy corresponds with a risk-
seeking perspective, because it does not account for the fact whether higher future payoffs 
are actually attainable. There are other notions of a level-0 strategy, however. A risk-seeking 
strategy can be contrasted with a risk-aversive strategy according to which one would stop if 
there were any lower future payoffs. There is still another notion of a level-0 strategy: Hedden 
and Zhang (2002; 2012) defined a so-called myopic level-0 strategy that only considers the 
current payoff and the closest future payoff. Player 1, for example, would only compare his 
payoffs in A and B, ignoring his payoffs in C and D. These strategies, however, are almost non-
existent in Flobbe et al.’s dataset. 

The findings from this study raise the question why younger children of 6 to 8 years are 
perfectly capable of accounting for second-order mental states in traditional false-belief 
studies (Coull, Leekam, & Bennett, 2006; Flobbe et al., 2008; Perner & Wimmer, 1985; Sullivan, 
Zaitchik, & Tager-Flusberg, 1994), as well as when they are asked to discriminate between 
ironic and deceptive speech acts (Winner & Leekam, 1991). One possible explanation is 
practice: Children have encountered false beliefs, irony, and deception more often than games 
such as in this study. Another explanation is that games can have a large space of possible 
outcomes, which requires extensive reasoning. False-belief stories and speech acts, on the 
other hand, are a given and thus require fewer computations. On a related note, children are 
better at reasoning about past events than about future possible outcomes (e.g., McColgan & 
McCormack, 2008; Suddendorf, Nielsen, & Gehlen, 2011). Reasoning about past events can 
be considered a linear traversal backwards in time, whereas reasoning about future events 
may follow an expanding tree-like structure. 
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This study has at least two methodological implications: One, experimenters should be 
careful in selecting ‘practice’ items, as participants exploit the possibility of using simple 
strategies when possible. Two, average proportions of correct answers, a popular statistic 
in most ToM studies, may not be as informative as a categorization of responses (also see 
Raijmakers et al., 2013). Flobbe et al., for example, reported that performance was just above 
chance-level (i.e., 57% correct), and the most common interpretation would be “on average 
children were able to apply second-order ToM in 57% of the games.” However, the current 
study shows that this score can be obtained if 1 or 2 children are applying second-order ToM 
and most of them below-optimal strategies such as zero-order and first-order ToM. 

The theoretical implication of this study is that people do not necessarily perceive sequential 
games in terms of interactions between mental states. They know that there is another player 
making decisions, but they have to learn over time, by playing many games, that the other 
player’s depth of reasoning could be greater than initially thought. Learning takes place when 
people obtain unexpected outcomes and start recognizing that the other player has a role in 
their outcomes. They will have to attribute their own, simple, strategies to the other player, 
thereby developing increasingly more complex strategies themselves. Over time, reasoning 
will become as complex as necessary, as simple as possible.
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Chapter 7 
 
Summary and discussion
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Discussion

This dissertation details an investigation of higher-order theory of mind in adults. It is high 
time to study higher-order theory of mind, as it has not yet received as much attention as first-
order theory of mind (ToM). Nevertheless, higher-order ToM is not some exotic cognitive 
function, and people need it to engage in complex social interactions. Communication, for 
example, may already require higher-order ToM if the wording is ambiguous, which is not 
that uncommon in language. To find the most probable meaning of an ambiguous utterance, 
the listener has to reason about the speaker’s beliefs, and account for the fact that the speaker 
in turn may have reasoned about the listener’s knowledge.

The study of ToM in adults also needs more attention, as ToM has mostly been studied in 
infants and children. That is not so surprising as first-order ToM develops around the age of 
4, and second-order ToM between 6 and 8. Nevertheless, adults still frequently fail to account 
for the mental states of others, and it is not yet evident why that happens. For example, do 
adults not have a complete theory of mind, or do they not have sufficient cognitive resources 
to apply it? This dissertation provides new insights into why adults may not always apply ToM 
despite the fact that they have already mastered it. 

In contrast to many other studies, theory of mind was investigated by means of two-player 
games, instead of false-belief tasks. One obvious advantage of these games is that they do not 
require language processing as much as the stories in false-belief tasks. Another advantage is 
that games can be presented many times, in various configurations, to the same participants. 
One concern has been that some games do not strictly require mental state reasoning. 
However, Chapters 3 and 4 have demonstrated that people did interpret the two-player games 
in terms of mental states. The study in Chapter 4, for example, shows that people do not 
consider a rational computer player to be the same as a completely deterministic device, even 
though the outcome of both was based on the same principle. In sum, the paradigm of two-
player games has proven to be successful in examining various characteristics of theory of 
mind. 

Cognitive constraints

Some studies suggest that the development of ToM in children involves a conceptual change 
(Gopnik & Slaughter, 1991; Gopnik & Wellman, 1992; 2000; Wellman, Cross, & Watson, 
2001; Wimmer & Perner, 1983). According to this account, children first experience desires 
and perceptions as simple causal links between them and the world, at age 2. Later, children 
learn about beliefs, and even think of these as representations, at age 3. However, they cannot 
yet incorporate belief representations into their ‘core’ theory of mind, which still reflects are 
rather direct causal link between them and the world. At the age of 4, they learn to perceive 
that representations (of mental states) are the basis of psychological function. 

An important prediction of this account is that if development of ToM would involve a 
conceptual change, ToM would not be susceptible to improvement when it has already reached 
maturity. The findings in this dissertation (see Chapter 2), however, imply that application 
of ToM is a computational process that can benefit from supporting structure. Application 
of higher-order ToM improved when adults were trained to account for increasingly more 
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complex mental states, when they were prompted to take another’s perspective, and when 
they were provided with visual cues as to how decisions are dependent on mental states. 
These findings show the ability to apply higher-order ToM is susceptible to improvement, and 
thus ToM may not be a fixed skill after all. However, adults and children do need sufficient 
cognitive resources to put that ability into practice. 

The study in Chapter 3 shows that the application of ToM may involve a specialized 
cognitive function to infer the mental states of self and others. Previously, developmental 
studies suggested that unsuccessful inference of mental states reflects a broader problem 
with representations in general (Leekam, Perner, Healey, & Sewell, 2006; Perner & Leekam, 
2008; Sabbagh, Xu, Carlson, Moses, & Kang, 2006; Todd & Gigerenzer, 2000). The findings 
in Chapter 3, however, show that reasoning about someone else’s decision-making is more 
difficult than making the same decision oneself, even though the required reasoning steps 
are the same. Apparently, switching perspective makes the decision problem more difficult. 
One possible explanation is that the representation of a particular decision-making problem 
becomes more elaborate as the complexity of the involved mental states increases.

The findings in Chapter 4 corroborate the conclusions of the study in Chapter 3. 
Participants were presented with two-player games in which they had to reason about another 
player. The findings show that performance depended on whether the other player was 
reasoning about the participant’s decision or, instead, about a mechanism. We hypothesized 
that the other player’s mental states would be easier to infer if he would be reasoning about 
a mechanism, because the mechanism was completely deterministic. In contrast, if the other 
player would be reasoning about the participant, the participant would have to reason about 
a multitude of ideas the other player could be having about her. Importantly, both conditions 
were completely isomorphic with respect to the required reasoning steps. Still, the results 
showed that the response times were shorter in the mechanism games. We argue that the 
non-mechanism games were more difficult to solve because people had to test many possible 
mental state interpretations. In the mechanism games, in contrast, the other person’s actions 
were dependent on a deterministic mechanism and people could therefore test fewer possible 
mental state interpretations and respond faster. Besides differential response times, the types 
of errors qualitatively differed between mechanism and non-mechanism games. 

In sum, the studies in Chapters 3 and 4 showed that the complexity of mental states, all 
other task aspects controlled for, caused differential cognitive processes. The more intricate the 
involved mental states were, the worse the performance was, which suggests that application 
of ToM consumed cognitive resources. The studies in later chapters show how people try to 
preserve cognitive resources and still perform well.

Cognitive processes

As application of ToM and especially higher-order ToM are considered to be effortful 
processes (see Chapters 2, 3, and 4), it is not surprising that people use simple strategies to 
reduce demands on cognitive resources. Todd and Gigerenzer (Meijering, Van Rijn, Taatgen, 
& Verbrugge, 2012; Szymanik, Meijering, & Verbrugge, 2013; see also Chapter 5 in this 
dissertation; Todd & Gigerenzer, 2000) already argued that people use simple strategies or 
heuristics to solve many (non-social) tasks. Chapters 5 and 6 show that this may be true 
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for inference of mental states as well: People start out reasoning about simple mental states, 
using basic strategies, and only account for more sophisticated mental states if their simple 
strategies do not yield desirable outcomes anymore.

In the study in Chapter 5, we tracked people’s eye movements during a two-player game 
in which they had to infer the other player’s mental states. The eye movements were analyzed 
for the presence of patterns, or eye movement sequences, that would indicate in what order 
people tend to construct a representation of recursive mental states. The most efficient strategy 
across all games would have been to construct these recursive mental states in a backward 
fashion, as each mental state depended on the next one. However, that strategy requires a 
deep understanding of the task domain, and most people tend to use more simple strategies 
that work across multiple domains (e.g., Gopnik et al., 2004; Todd & Gigerenzer, 2000). The 
eye movements indeed indicated that people inferred mental states in a more simple and 
forward progression, only tracking backward if previous (higher-order) mental states had to 
be revised. 

The prevalence of a simple and forward approach can be explained by the principle of 
economy: Immediate decisions that ignore future possibilities can yield the optimal outcome 
in many cases (2008; Meijering et al., 2012; Szymanik et al., 2013). Furthermore, forward 
reasoning receives much practice across many domains, for example in causal inference 
(Apperly & Butterfill, 2009; Baron-Cohen, Leslie, & Frith, 1985; Gopnik et al., 2004; Gopnik 
& Wellman, 1992; Leslie, Friedman, & German, 2004; Onishi & Baillargeon, 2005; Premack & 
Woodruff, 1978; Saxe, Schulz, & Jiang, 2006; Wimmer & Perner, 1983). Thus, it is not surprising 
that forward reasoning, in its most simple form, is also used to construct representations of 
recursive mental states.

Chapter 6 provides a computational cognitive account of the use of simple strategies during 
inference of mental states. The model is based on previous empirical findings (reported 
in Chapters 2 and 5), and is validated by data from Flobbe et al.’s (but see Baker, Saxe, & 
Tenenbaum, 2009; Flobbe et al., 2008) developmental study. The model uses a simple strategy 
at first and only starts incorporating more complex mental states in the face of unexpected 
outcomes. The simple strategy is comparable to forward reasoning, which is later followed by 
backtracking, as the model starts considering future possible actions and underlying mental 
states. Investigating Flobbe et al.’s data, we saw response patterns that were indeed indicative 
of simple strategies. Few children were able to account for the fact that another person could 
be reasoning about them. 

In sum, the findings in Chapters 5 and 6 corroborate the claim we made in earlier chapters: 
Application of (higher-order) ToM is a computational process that can either benefit from 
supporting structure, or be simplified by using simple strategies, thereby reducing cognitive 
demands. Given these findings, what new insights can future ToM research bring?

Looking into the future

The studies in this dissertation show that application of (higher-order) ToM is a complicated 
task. The fact that higher-order ToM consists of multiple procedural and declarative building 
blocks almost poses something like an inverse problem in the sense that there are many 
possible sources that could yield the same behavioral patterns. Therefore, a multidisciplinary 
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approach to the investigation of ToM is desirable. 
So far, ToM has mostly been studied in clinical settings, developmental studies, animal 

studies, and imaging studies, which all have produced many interesting insights and theories 
(Apperly & Butterfill, 2009; 2013; Baron-Cohen et al., 1985; Gopnik & Wellman, 1992; 
Leslie et al., 2004; Onishi & Baillargeon, 2005; Premack & Woodruff, 1978; Saxe et al., 2006; 
Wimmer & Perner, 1983). Most theories, however, exist only on paper, and do not directly 
translate to quantifiable predictions (but see Baker et al., 2009). This is why computational 
cognitive modeling needs to be employed more often, as a way of testing existing and new 
theories: Once implemented, a theory can yield quantifiable predictions that can be directly 
tested in one or more experiments. 

This dissertation is a modest step towards a cognitive modeling approach, as we have yet to 
validate our model in many more domains. The model could be used to accommodate other 
ToM paradigms, and it could be used to generate hypotheses for clinical, developmental, 
imaging and other psychophysiological studies. The model could, for example, simulate 
application of ToM in higher-order false-belief tasks, in which one agent (e.g., Sally) has a false 
belief about another agent’s (e.g., Anne’s) beliefs. At first, the model would do the task from its 
own perspective, and later the model would attribute its knowledge to the other agent, Sally. 
Lastly, the model would reason about Sally as if she would attribute her own knowledge to 
yet again another agent, Anne. Scenarios such as these are currently being tested empirically 
by Arslan et al. (2013). The most obvious prediction is that children of 4 years old who have 
not yet mastered second-order ToM, but who do have first-order ToM, would not fall prey to 
the reality bias. Instead they would apply first-order ToM when, in actuality, they are asked to 
make a second-order inference.

It would also be interesting to look at transfer of ToM between various ToM domains by 
having one model play, for example, Marble Drop games and do higher-order false-belief 
tasks. Would experience in one task be beneficial in the other? How much overlap is there 
between the tasks with respect to demands on cognitive functions? Questions like these have 
recently been investigated by Taatgen (2013) in other (non-social) domains. His modeling 
approach has culminated in Actransfer, an extension of ACT-R (Anderson, 2007; Anderson 
et al., 2004), which is a theory about the nature and transfer of cognitive skills. Actransfer is 
particularly relevant to investigate the domain-specificity of ToM, which is still hotly debated: 
Does ToM require a specialized cognitive function, or does it involve general cognitive 
skills that are used across multiple domains? The empirical results in Chapter 3 suggest that 
ToM requires a specialized cognitive function, but it provides pointers to many possible 
explanations. Actransfer could help in finding the most primitive elements that comprise 
application of ToM.

Testing our model in various domains may not only yield insights that help us improve 
the model. Some insights will help improve the cognitive architecture (e.g., ACT-R) as a 
whole. If, for example, application of ToM indeed requires a specialized cognitive function to 
infer mental states of self and others, the architecture needs to accommodate such a module. 
Therefore, the study of ToM is particularly interesting for the entire cognitive sciences, as it 
will help constructing an integrated theory of cognition.
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Samenvatting
Het onderzoek in dit proefschrift gaat over hoe mensen redeneren over andermans denken; 
wat hun gedachten, intenties en doelen zijn. Dit onderzoek is belangrijk voor het vormen van 
een geïntegreerde theorie van cognitie, omdat de vraag is of redeneren over andermans denken 
een speciale cognitieve functie is. Zowel het onderzoek als het redeneren over andermans 
denken is ingewikkeld om één heel duidelijke reden: redeneren en denken zijn onzichtbaar 
processen. Toch zijn mensen verassend goed in het redeneren over andermans denken; we 
kunnen met enige zekerheid voorspellen op welke politieke partij vrienden en familieleden 
zullen stemmen, omdat we weten hoe zij denken, wat hun opvattingen zijn, et cetera. Maar 
er zijn limieten aan het redeneren over andermans denken. Met name bij jonge kinderen 
wordt dat snel duidelijk, bijvoorbeeld als ze niet begrijpen dat we ze nog steeds kunnen zien 
als ze hun handen voor hun ogen houden. Jonge kinderen vinden het moeilijk om zich in 
een ander te verplaatsen. Volwassenen hebben daar minder moeite mee, maar toch wordt 
tijdens een spel schaak (of poker) al snel duidelijk dat het ondoenlijk is om alle gedachten 
van de tegenspeler te anticiperen. Het is helemaal moeilijk om te anticiperen welke gedachten 
de tegenspeler heeft over onze gedachten. Dit recursieve denkproces, dat in theorie oneindig 
is, houdt in de praktijk al snel op. In dit proefschrift laat ik zien waarom het redeneren over 
andermans denken, wat ik vanaf nu meta-denken zal noemen, limieten heeft.

Onderzoek naar meta-denken

Meta-denken is in het verleden voornamelijk bij kinderen onderzocht, met als achterliggend 
idee dat de ontwikkeling van een cognitieve functie iets kan vertellen over de uiteindelijke 
aard van die functie in volwassenen. Het meest populaire experiment om meta-denken bij 
kinderen te onderzoeken is de Sally-Anne taak. Het gaat als volgt: Sally en Anne spelen met 
knikkers. Als Sally eventjes weggaat, bergt ze eerst haar knikkers op in haar mandje. Terwijl 
Sally weg is, pakt Anne de knikkers en verstopt ze die in de speelgoeddoos. Na een tijdje komt 
Sally terug en de vraag aan kinderen is: Waar zal Sally naar haar knikkers zoeken? Kinderen 
die het meta-denken onder de knie hebben, weten dat Sally nog steeds denkt dat de knikkers 
in haar mandje zijn en dat ze daar zal zoeken, ook al zijn de knikkers in werkelijkheid in de 
speelgoeddoos. Kinderen die het meta-denken nog niet beheersen, zullen zeggen dat Sally 
naar de knikkers in de speelgoeddoos zal zoeken. Ze kunnen feiten en gedachten nog niet van 
elkaar onderscheiden. 

Tot op heden is nog steeds niet duidelijk of dat komt omdat ze geen begrip hebben van 
mentale toestanden zoals kennis, gedachten en intenties of omdat ze nog niet de cognitieve 
vaardigheden hebben om over die mentale toestanden na te denken. Om dit probleem te 
ondervangen, heb ik onderzoek gedaan bij volwassenen, want die hebben een groter besef van 
onzichtbare denkprocessen. De algemene cognitieve vaardigheden zijn ook beter ontwikkeld 
bij volwassen en dus stelt onderzoek bij hen ons beter in staat om vast te stellen in hoeverre 
meta-denken een speciale cognitieve functie betreft.

Speciaal voor dit onderzoek heb ik een knikkerspel ontwikkeld waarin twee spelers om 
beurten een beslissing maken over het verloop van het spel. Het spel doet een beroep op 
het meta-denken, omdat de uitkomsten van elke beslissing afhankelijk zijn van de volgende 
beslissing. De ene speler moet dus nadenken over het beslisproces en de onderliggende 
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gedachten van de andere speler.  

De aard van het meta-denken

Om na te gaan of het meta-denken wordt gelimiteerd door cognitieve vaardigheden, heb 
ik onderzocht of training en andersoortige ondersteuning een gunstig effect hebben op het 
meta-denken. De uitkomsten van dit onderzoek zijn positief: Mensen presteerden beter als 
ze het meta-denken in een bepaalde taak stapsgewijs oefenden: Ze leerden eerst de taak 
vanuit het eigen perspectief te doen en later dat perspectief aan een ander toe te schrijven. 
Ook presteerden mensen beter als hen expliciet werd gevraagd om zich te verplaatsen in het 
perspectief van de ander. Deze resultaten laten zien dat suboptimale uitkomsten in een sociale 
interactie niet zozeer zijn toe te schrijven aan onbegrip als wel aan gebrek aan oefening. In die 
zin is het meta-denken dus een cognitieve vaardigheid die je kunt oefenen en niet perse een 
vaardigheid die men wel of niet beheerst.

De belangrijkste vraag in dit proefschrift is of meta-denken een speciale cognitieve 
vaardigheid is, in tegenstelling tot een vaardigheid die is opgebouwd uit meer algemene 
vaardigheden. De resultaten van een aantal ontwikkelingsstudies in 2006 doen vermoeden dat 
meta-denken niet speciaal is en bestaat uit algemene vaardigheden. Deze studies hebben laten 
zien dat kinderen die slecht scoorden op de Sally-Anne taak ook moeite hadden met redeneren 
in het algemeen. Echter, in dit proefschrift laat ik zien dat dergelijke conclusies niet zijn te 
trekken op basis van ontwikkelingsstudies. Het experiment in Hoofdstuk 3 laat duidelijk zien 
dat het meta-denken wel degelijk een speciale cognitieve vaardigheid is: volwassenen werden 
blootgesteld aan twee condities met als enige verschil de instructie om de taak vanuit het 
eigen perspectief of dat van een ander te doen. De resultaten laten zien dat zowel de kwaliteit 
als de snelheid van het meta-denken verschilde tussen de twee condities. Als de instructie was 
om de taak vanuit het eigen perspectief te doen, presteerden de volwassen sneller en beter 
dan wanneer de instructie was om dezelfde taak vanuit het perspectief van een ander te doen. 
Deze resultaten impliceren dat de aard van het menselijk redeneren afhankelijk is van het feit 
of een taak al dan niet over mentale toestanden gaat, los van de complexiteit van de taak.

In dit proefschrift laat ik ook zien dat in sociale interacties mensen de voorkeur geven 
aan simpele strategieën en pas beginnen met meta-denken als het echt niet anders kan. In 
een eerdere ontwikkelingsstudie werd kinderen gevraagd een computerspel te spelen, met de 
computer als tegenstander. De uitkomsten van die studie deden vermoeden dat de kinderen 
het meta-denken al enigszins beheersten. Maar door middel van computersimulaties laat 
ik zien dat het waarschijnlijker is dat de kinderen simpelere strategieën gebruikten als die 
ook tot juiste uitkomst leidden. Pas als duidelijk werd dat die strategieën niet altijd werkten, 
probeerden de kinderen het perspectief van de tegenspeler mee te nemen door hun eigen 
strategie aan de tegenspeler toe te schrijven. Zodoende ontwikkelden zij langzamerhand 
steeds complexere strategieën die steeds meer op meta-denken gingen lijken.

De bevindingen van dit proefschrift zijn belangrijk voor het formuleren van een 
geïntegreerde theorie van cognitie, omdat het meta-denken daarin een rol dient te hebben. 
Het is een speciale cognitieve functie die het denken in kwalitatieve zin beïnvloed. Daarnaast 
zijn de bevindingen in dit proefschrift van belang voor de praktijk, onder andere omdat 
het meta-denken is te trainen. Door het bieden van de juiste structuur kunnen mensen 
leren om optimalere uitkomsten te behalen in sociale interacties zoals onderhandelingen, 
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samenwerkingsverbanden en competities.
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